Abstract
This study uses machine learning techniques to classify the surface roughness using the laser speckle images of the machined samples, an intriguing yet relatively less explored field of research in the realm of speckle metrology. The laser speckle imaging technique is sensitive to surface roughness paving the way for the classification of the machined specimen based on surface roughness using the distinct speckle pattern. The paper presents the analysis of the performance of the state-of-the-art machine learning techniques on the preliminary dataset of the speckle pattern of the machined sample. The gray level co-occurrence matrix is used for feature extraction. The model performance with various combinations of features is studied to distinguish the most descriptive feature for generalization. The assessment of the classifiers’ performance aids in the generalization of the classification and prediction of the roughness classes in the range \(R_a =0.1\ \mu m-1.6\ \mu m\) using the speckle images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A.L.P.Camargo, M.R.B.Dias, M.R.Lemos, M.M.Mello, L. da Silva, P.A.M.dos Santos, J.A.O.Huguenin: Estimation of statistical properties of rough surface profiles from the hurst exponent of speckle patterns. ppl. Opt 59, 5957–5966 (2020)
Baradit, E., Gatica, C., Yáñez, M., Figueroa, J.C., Guzmán, R., Catalán, C.: Surface roughness estimation of wood boards using speckle interferometry. Opt. Lasers Eng. 128, 106009 (2020). https://doi.org/10.1016/j.optlaseng.2020.106009
Bengio, Y., Delalleau, O., Le Roux, N.: The curse of dimensionality for local kernel machines. Techn. Rep 1258(12), 1 (2005)
Chebrolu, V., Koona, R., Raju, R., et al.: Automated evaluation of surface roughness using machine vision based intelligent systems. Journal of Scientific & Industrial Research 82(1), 11–25 (2022)
Chen, W., Zou, B., Li, Y., Huang, C.: A study of a rapid method for detecting the machined surface roughness. The International Journal of Advanced Manufacturing Technology 117, 3115–3127 (2021)
Conners RW, H.C.: A theoretical comparison of texture algorithms. IEEE Trans Pattern Anal Mach Intell. 2(3):204-22, 110–118 (Mar 1980). 10.1109/tpami.1980.4767008
Corrêa, R.D.,Meireles, J.B.Huguenin J, Caetano D.P, Silva L: Fractal structure of digital speckle patterns produced by rough surfaces. Physica A: Statistical Mechanics and its Applications 392, 869–874 (02 2013). 10.1016/j.physa.2012.10.023
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018
Kayahan, E., Oktem, H., Hacizade, F., Nasibov, H., Gundogdu, O.: Measurement of surface roughness of metals using binary speckle image analysis. Tribol. Int. 43(1), 307–311 (2010). https://doi.org/10.1016/j.triboint.2009.06.010
Ghosh, A.K.: On optimum choice of k in nearest neighbor classification. Computational Statistics & Data Analysis 50(11), 3113–3123 (2006)
Haralick, R.M., Shanmugam, K., Dinstein: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-3(6), 610–621 (1973). 10.1109/TSMC.1973.4309314
Hearst, M., Dumais, S., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intelligent Systems and their Applications 13(4), 18–28 (1998). https://doi.org/10.1109/5254.708428
Hitoshi Fujii, T.A.: Roughness measurements of metal surfaces using laser speckle. J. Opt. Soc. Am. 67(9), 1171–1176 (1977)
Hurden, A.: Vibration mode analysis using electronic speckle pattern interferometry. Optics & Laser Technology 14(1), 21–25 (1982)
Jeyapoovan, T., Murugan, M.: Surface roughness classification using image processing. Measurement 46(7), 2065–2072 (2013)
J.W.Goodman: Some fundamental properties of speckle\(\ast \). Journal of the Optical Society of America (1917-1983) 66(11), 1145–1150 (Nov 1976)
J.W.Goodman: Speckle Phenomena in Optics Theory and Applications Second Edition (2014)
Lehmann, P.: Surface-roughness measurement based on the intensity correlation function of scattered light under speckle-pattern illumination. Appl. Opt. 38(7), 1144–1152 (1999). https://doi.org/10.1364/AO.38.001144
Liu, H., Zhang, S., Zhao, J., Zhao, X., Mo, Y.: A new classification algorithm using mutual nearest neighbors. In: 2010 Ninth International Conference on Grid and Cloud Computing. pp. 52–57. IEEE (2010)
Patil, S.H., Kulkarni, R.: Surface roughness measurement based on singular value decomposition of objective speckle pattern. Opt. Lasers Eng. 150, 106847 (2022). https://doi.org/10.1016/j.optlaseng.2021.106847
Song, Y.Y., Ying, L.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27(2), 130 (2015)
Suhail, S.M., Ali, J.M., Jailani, H.S., Murugan, M.: Vision based system for surface roughness characterisation of milled surfaces using speckle line images. In: IOP Conference Series: Materials Science and Engineering. vol. 402, p. 012054. IOP Publishing (2018)
Taunk, Kashvi De, Sanjukta Verma, Srishti Swetapadma, Aleena: A brief review of nearest neighbor algorithm for learning and classification. In: 2019 international conference on intelligent computing and control systems (ICCS). pp. 1255–1260. IEEE (2019)
Tsai, D.M., Tseng, C.F.: Surface roughness classification for castings. Pattern Recogn. 32(3), 389–405 (1999)
Wang, Y., Cao, J., Xu, C., Cheng, Y., Cheng, X., Hao, Q.: Moving target tracking and imaging through scattering media via speckle-difference-combined bispectrum analysis. IEEE Photonics J. 11(6), 1–14 (2019)
Wu, X, Kumar V: The Top Ten Algorithms in Data Mining 1st Edition (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Patil, S.H. (2025). Evaluation of Machine Learning Techniques for Classification of Surface Roughness of Machined Samples using Laser Speckle Imaging Technique. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15327. Springer, Cham. https://doi.org/10.1007/978-3-031-78398-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-78398-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78397-5
Online ISBN: 978-3-031-78398-2
eBook Packages: Computer ScienceComputer Science (R0)