Abstract
Computed tomography angiography (CTA) scans provide doctors with an accurate visualization of the vascular system that helps them make diagnostic decisions. To help doctors make a quick diagnosis, the resolution of CTA images needs to be improved. With the advancement of deep learning technology, many neural network models have been proposed to improve image quality. Most current image super-resolution (SR) methods still have problems, such as texture loss and boundary-blurring, and there are few methods for CTA images. In this paper, we propose the Separation Feature Residual Diffusion Model (Dual-ResShift) for generating high-resolution (HR) CTA images with only 15 sampling steps. In the model, we propose a feature-separated SFUNet and a new feature extraction algorithm, GBVS-Enhanced based on Graph-based visual saliency (GBVS), to enhance the extraction of high-frequency features. In addition, we design a loss function named \(\mathcal L_{Edge}\) to guide the diffusion model to optimize the image. Our method was verified on the clinical CTA dataset and AVT dataset. The PSNR reached 26.4165, SSIM reached 0.7440, and LPIPS reached 0.0484 on the clinical CTA dataset. The PSNR reached 28.6791, SSIM reached 0.7805, and LPIPS reached 0.0365 on the AVT dataset. Experiments show that Dual-ResShift can outperform existing methods. Our code and model are put on https://github.com/prefectmoon/Dual-ResShift-code.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 126–135 (2017)
Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)
Chen, Y., Xie, Y., Zhou, Z., Shi, F., Christodoulou, A.G., Li, D.: Brain mri super resolution using 3d deep densely connected neural networks. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). pp. 739–742. IEEE (2018)
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE international conference on computer vision. pp. 764–773 (2017)
Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11065–11074 (2019)
Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13. pp. 184–199. Springer (2014)
Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. pp. 391–407. Springer (2016)
Feng, C.M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast mri super-resolution via a multi-stage integration network. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI 24. pp. 140–149. Springer (2021)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)
Gu, S., Lugmayr, A., Danelljan, M., Fritsche, M., Lamour, J., Timofte, R.: Div8k: Diverse 8k resolution image dataset. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). pp. 3512–3516. IEEE (2019)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Advances in neural information processing systems 19 (2006)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)
Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4681–4690 (2017)
Li, H., Yang, Y., Chang, M., Chen, S., Feng, H., Xu, Z., Li, Q., Chen, Y.: Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)
Li, P., Li, Z., Pang, X., Wang, H., Lin, W., Wu, W.: Multi-scale residual denoising gan model for producing super-resolution cta images. Journal of Ambient Intelligence and Humanized Computing pp. 1–10 (2022)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image restoration using swin transformer. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 1833–1844 (2021)
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 136–144 (2017)
Mao, Y., Jiang, L., Chen, X., Li, C.: Disc-diff: Disentangled conditional diffusion model for multi-contrast mri super-resolution. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 387–397. Springer (2023)
Qiu, D., Cheng, Y., Wang, X.: Residual dense attention networks for covid-19 computed tomography images super-resolution. IEEE Transactions on Cognitive and Developmental Systems (2022)
Radl, L., Jin, Y., Pepe, A., Li, J., Gsaxner, C., hua Zhao, F., Egger, J.: Aortic Vessel Tree (AVT) CTA Datasets and Segmentations (1 2022). https://doi.org/10.6084/m9.figshare.14806362.v1, https://figshare.com/articles/dataset/Aortic_Vessel_Tree_AVT_CTA_Datasets_and_Segmentations/14806362
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10684–10695 (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10684–10695 (2022)
Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4713–4726 (2022)
Shao, D., Qin, L., Xiang, Y., Ma, L., Xu, H.: Medical image blind super-resolution based on improved degradation process. IET Image Proc. 17(5), 1615–1625 (2023)
Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1874–1883 (2016)
Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)
Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. Advances in neural information processing systems 32 (2019)
Song, Z., Qiu, D., Zhao, X., Liu, R., Hui, Y., Jiang, H.: Parallel alternating iterative optimization for cardiac magnetic resonance image blind super-resolution. IEEE Journal of Biomedical and Health Informatics pp. 1–11 (2024https://doi.org/10.1109/JBHI.2024.3357988
Wang, B., Liao, X., Ni, Y., Zhang, L., Liang, J., Wang, J., Liu, Y., Sun, X., Ou, Y., Wu, Q., et al.: High-resolution medical image reconstruction based on residual neural network for diagnosis of cerebral aneurysm. Frontiers in Cardiovascular Medicine 9, 1013031 (2022)
Wang, J., Yue, Z., Zhou, S., Chan, K.C., Loy, C.C.: Exploiting diffusion prior for real-world image super-resolution. arXiv preprint arXiv:2305.07015 (2023)
Wang, J., Levman, J., Pinaya, W.H.L., Tudosiu, P.D., Cardoso, M.J., Marinescu, R.: Inversesr: 3d brain mri super-resolution using a latent diffusion model. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 438–447. Springer (2023)
Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 1905–1914 (2021)
Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. vol. 2, pp. 1398–1402. Ieee (2003)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV). pp. 3–19 (2018)
Wu, Z., Chen, X., Xie, S., Shen, J., Zeng, Y.: Super-resolution of brain mri images based on denoising diffusion probabilistic model. Biomed. Signal Process. Control 85, 104901 (2023)
Xia, B., Zhang, Y., Wang, S., Wang, Y., Wu, X., Tian, Y., Yang, W., Van Gool, L.: Diffir: Efficient diffusion model for image restoration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13095–13105 (2023)
Yue, Z., Wang, J., Loy, C.C.: Resshift: Efficient diffusion model for image super-resolution by residual shifting. Advances in Neural Information Processing Systems 36 (2024)
Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4791–4800 (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 586–595 (2018)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European conference on computer vision (ECCV). pp. 286–301 (2018)
Zhou, H., Huang, Y., Li, Y., Zhou, Y., Zheng, Y.: Blind super-resolution of 3d mri via unsupervised domain transformation. IEEE J. Biomed. Health Inform. 27(3), 1409–1418 (2023). https://doi.org/10.1109/JBHI.2022.323251
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networkss. In: Computer Vision (ICCV), 2017 IEEE International Conference on (2017)
Acknowledgement
This study was supported by the Fundamental Research Funds for the Central Universities(2023CDJYGRH-ZD06, 2022CDJYGRH-015), and the Chongqing medical scientific research project (Joint project of Chongqing Health Commission and Science and Technology Bureau) (CSTB2023TIAD-KPX0050, 2024ZDXM007), and Chongqing Technology Innovation and Application Development Project(CSTB2022TIAD-KPX0176).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, F., Wen, J., Wang, Y. (2025). Dual-ResShift: Dual-Input Separated Features Residual Shift Diffusion Model for CTA Image Super-Resolution. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15327. Springer, Cham. https://doi.org/10.1007/978-3-031-78398-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-78398-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78397-5
Online ISBN: 978-3-031-78398-2
eBook Packages: Computer ScienceComputer Science (R0)