Skip to main content

Dual-ResShift: Dual-Input Separated Features Residual Shift Diffusion Model for CTA Image Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15327))

Included in the following conference series:

  • 132 Accesses

Abstract

Computed tomography angiography (CTA) scans provide doctors with an accurate visualization of the vascular system that helps them make diagnostic decisions. To help doctors make a quick diagnosis, the resolution of CTA images needs to be improved. With the advancement of deep learning technology, many neural network models have been proposed to improve image quality. Most current image super-resolution (SR) methods still have problems, such as texture loss and boundary-blurring, and there are few methods for CTA images. In this paper, we propose the Separation Feature Residual Diffusion Model (Dual-ResShift) for generating high-resolution (HR) CTA images with only 15 sampling steps. In the model, we propose a feature-separated SFUNet and a new feature extraction algorithm, GBVS-Enhanced based on Graph-based visual saliency (GBVS), to enhance the extraction of high-frequency features. In addition, we design a loss function named \(\mathcal L_{Edge}\) to guide the diffusion model to optimize the image. Our method was verified on the clinical CTA dataset and AVT dataset. The PSNR reached 26.4165, SSIM reached 0.7440, and LPIPS reached 0.0484 on the clinical CTA dataset. The PSNR reached 28.6791, SSIM reached 0.7805, and LPIPS reached 0.0365 on the AVT dataset. Experiments show that Dual-ResShift can outperform existing methods. Our code and model are put on https://github.com/prefectmoon/Dual-ResShift-code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 126–135 (2017)

    Google Scholar 

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  3. Chen, Y., Xie, Y., Zhou, Z., Shi, F., Christodoulou, A.G., Li, D.: Brain mri super resolution using 3d deep densely connected neural networks. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). pp. 739–742. IEEE (2018)

    Google Scholar 

  4. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE international conference on computer vision. pp. 764–773 (2017)

    Google Scholar 

  5. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 11065–11074 (2019)

    Google Scholar 

  6. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13. pp. 184–199. Springer (2014)

    Google Scholar 

  8. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14. pp. 391–407. Springer (2016)

    Google Scholar 

  9. Feng, C.M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast mri super-resolution via a multi-stage integration network. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI 24. pp. 140–149. Springer (2021)

    Google Scholar 

  10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  11. Gu, S., Lugmayr, A., Danelljan, M., Fritsche, M., Lamour, J., Timofte, R.: Div8k: Diverse 8k resolution image dataset. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). pp. 3512–3516. IEEE (2019)

    Google Scholar 

  12. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Advances in neural information processing systems 19 (2006)

    Google Scholar 

  13. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  14. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of psnr in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)

    Article  Google Scholar 

  15. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4681–4690 (2017)

    Google Scholar 

  16. Li, H., Yang, Y., Chang, M., Chen, S., Feng, H., Xu, Z., Li, Q., Chen, Y.: Srdiff: Single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)

    Article  Google Scholar 

  17. Li, P., Li, Z., Pang, X., Wang, H., Lin, W., Wu, W.: Multi-scale residual denoising gan model for producing super-resolution cta images. Journal of Ambient Intelligence and Humanized Computing pp. 1–10 (2022)

    Google Scholar 

  18. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image restoration using swin transformer. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 1833–1844 (2021)

    Google Scholar 

  19. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. pp. 136–144 (2017)

    Google Scholar 

  20. Mao, Y., Jiang, L., Chen, X., Li, C.: Disc-diff: Disentangled conditional diffusion model for multi-contrast mri super-resolution. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 387–397. Springer (2023)

    Google Scholar 

  21. Qiu, D., Cheng, Y., Wang, X.: Residual dense attention networks for covid-19 computed tomography images super-resolution. IEEE Transactions on Cognitive and Developmental Systems (2022)

    Google Scholar 

  22. Radl, L., Jin, Y., Pepe, A., Li, J., Gsaxner, C., hua Zhao, F., Egger, J.: Aortic Vessel Tree (AVT) CTA Datasets and Segmentations (1 2022). https://doi.org/10.6084/m9.figshare.14806362.v1, https://figshare.com/articles/dataset/Aortic_Vessel_Tree_AVT_CTA_Datasets_and_Segmentations/14806362

  23. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

    Google Scholar 

  24. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

    Google Scholar 

  25. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 45(4), 4713–4726 (2022)

    Google Scholar 

  26. Shao, D., Qin, L., Xiang, Y., Ma, L., Xu, H.: Medical image blind super-resolution based on improved degradation process. IET Image Proc. 17(5), 1615–1625 (2023)

    Article  Google Scholar 

  27. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1874–1883 (2016)

    Google Scholar 

  28. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  29. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  30. Song, Z., Qiu, D., Zhao, X., Liu, R., Hui, Y., Jiang, H.: Parallel alternating iterative optimization for cardiac magnetic resonance image blind super-resolution. IEEE Journal of Biomedical and Health Informatics pp. 1–11 (2024https://doi.org/10.1109/JBHI.2024.3357988

  31. Wang, B., Liao, X., Ni, Y., Zhang, L., Liang, J., Wang, J., Liu, Y., Sun, X., Ou, Y., Wu, Q., et al.: High-resolution medical image reconstruction based on residual neural network for diagnosis of cerebral aneurysm. Frontiers in Cardiovascular Medicine 9, 1013031 (2022)

    Article  Google Scholar 

  32. Wang, J., Yue, Z., Zhou, S., Chan, K.C., Loy, C.C.: Exploiting diffusion prior for real-world image super-resolution. arXiv preprint arXiv:2305.07015 (2023)

  33. Wang, J., Levman, J., Pinaya, W.H.L., Tudosiu, P.D., Cardoso, M.J., Marinescu, R.: Inversesr: 3d brain mri super-resolution using a latent diffusion model. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 438–447. Springer (2023)

    Google Scholar 

  34. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 1905–1914 (2021)

    Google Scholar 

  35. Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020)

    Article  Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  37. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. vol. 2, pp. 1398–1402. Ieee (2003)

    Google Scholar 

  38. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV). pp. 3–19 (2018)

    Google Scholar 

  39. Wu, Z., Chen, X., Xie, S., Shen, J., Zeng, Y.: Super-resolution of brain mri images based on denoising diffusion probabilistic model. Biomed. Signal Process. Control 85, 104901 (2023)

    Article  Google Scholar 

  40. Xia, B., Zhang, Y., Wang, S., Wang, Y., Wu, X., Tian, Y., Yang, W., Van Gool, L.: Diffir: Efficient diffusion model for image restoration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13095–13105 (2023)

    Google Scholar 

  41. Yue, Z., Wang, J., Loy, C.C.: Resshift: Efficient diffusion model for image super-resolution by residual shifting. Advances in Neural Information Processing Systems 36 (2024)

    Google Scholar 

  42. Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4791–4800 (2021)

    Google Scholar 

  43. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 586–595 (2018)

    Google Scholar 

  44. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European conference on computer vision (ECCV). pp. 286–301 (2018)

    Google Scholar 

  45. Zhou, H., Huang, Y., Li, Y., Zhou, Y., Zheng, Y.: Blind super-resolution of 3d mri via unsupervised domain transformation. IEEE J. Biomed. Health Inform. 27(3), 1409–1418 (2023). https://doi.org/10.1109/JBHI.2022.323251

    Article  Google Scholar 

  46. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networkss. In: Computer Vision (ICCV), 2017 IEEE International Conference on (2017)

    Google Scholar 

Download references

Acknowledgement

This study was supported by the Fundamental Research Funds for the Central Universities(2023CDJYGRH-ZD06, 2022CDJYGRH-015), and the Chongqing medical scientific research project (Joint project of Chongqing Health Commission and Science and Technology Bureau) (CSTB2023TIAD-KPX0050, 2024ZDXM007), and Chongqing Technology Innovation and Application Development Project(CSTB2022TIAD-KPX0176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3595 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, F., Wen, J., Wang, Y. (2025). Dual-ResShift: Dual-Input Separated Features Residual Shift Diffusion Model for CTA Image Super-Resolution. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15327. Springer, Cham. https://doi.org/10.1007/978-3-031-78398-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78398-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78397-5

  • Online ISBN: 978-3-031-78398-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics