Skip to main content

Uncertainty-RIFA-Net: Uncertainty Aware Robust Information Fusion Attention Network for Brain Tumors Classification in MRI Images

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

Malignant brain tumors pose a significant global threat, emphasizing the critical need for efficient diagnostic methods utilizing MRI. Manual analysis of MRI images is labor-intensive and subjective, highlighting the necessity for faster and automated effective methods. In this paper, we propose an uncertainty-aware robust information fusion attention network model for precisely classifying brain tumors in MRI images. Our approach introduces a novel robust information fusion attention layer that learns enhanced representations by integrating global context with local information. We estimate the uncertainty in our model’s predictions using the ensemble Monte Carlo dropout strategy. Our findings demonstrate outstanding performance, achieving accuracies of 98.37% on the Cheng dataset and 98.48% on the Nickparvar dataset in brain tumor MRI image classification tasks, while minimizing computational costs in terms of resource usage and inference time.

These two authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brain stroke CT image dataset, https://www.kaggle.com/datasets/afridirahman/brain-stroke-ct-imagedataset

  2. Brain Tumor - Statistics — cancer.net. https://www.cancer.net/cancer-types/brain-tumor/statistics, [Accessed 15-06-2024]

  3. Alzahrani, S.M.: ConvAttenMixer: Brain tumor detection and type classification using convolutional mixer with external and self-attention mechanisms. Journal of King Saud University-Computer and Information Sciences 35(10), 101810 (2023)

    Article  Google Scholar 

  4. Billingsley, G., Dietlmeier, J., Narayanaswamy, V., Spanias, A., O’Connor, N.E.: An L2-normalized spatial attention network for accurate and fast classification of brain tumors in 2D T1-weighted CE-MRI images. In: 2023 IEEE International Conference on Image Processing (ICIP). pp. 1895–1899 (2023)

    Google Scholar 

  5. Bodapati, J.D., Balaji, B.B.: TumorAwareNet: Deep representation learning with attention based sparse convolutional denoising autoencoder for brain tumor recognition. Multimedia Tools and Applications pp. 1–19 (2023)

    Google Scholar 

  6. Celik, M., Inik, O.: Development of hybrid models based on deep learning and optimized machine learning algorithms for brain tumor multi-classification. Expert Syst. Appl. 238, 122159 (2024)

    Article  Google Scholar 

  7. Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., Feng, Q.: Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10, e0140381 (2015)

    Article  Google Scholar 

  8. Deepak, S., Ameer, P.: Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 111, 103345 (2019)

    Article  Google Scholar 

  9. Dutta, T.K., Nayak, D.R., Zhang, Y.D.: ARM-Net: Attention-guided residual multiscale cnn for multiclass brain tumor classification using mr images. Biomed. Signal Process. Control 87, 105421 (2024)

    Article  Google Scholar 

  10. Hammad, M., ElAffendi, M., Ateya, A.A., Abd El-Latif, A.A.: Efficient brain tumor detection with lightweight end-to-end deep learning model. Cancers 15, 2837 (2023)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

    Google Scholar 

  12. Jaspin, K., Selvan, S.: Multiclass convolutional neural network based classification for the diagnosis of brain MRI images. Biomed. Signal Process. Control 82, 104542 (2023)

    Article  Google Scholar 

  13. Nickparvar, M.: Brain tumor MRI dataset. Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/2645886.(Accessed on 3rd March) (2021)

  14. Öksüz, C., Urhan, O., Güllü, M.K.: An integrated convolutional neural network with attention guidance for improved performance of medical image classification. Neural Computing and Applications pp. 1–33 (2023)

    Google Scholar 

  15. Ozaltin, O., Coskun, O., Yeniay, O., Subasi, A.: A deep learning approach for detecting stroke from brain CT images using oznet. Bioengineering 9(12), 783 (2022)

    Article  Google Scholar 

  16. Shahin, A.I., Aly, S., Aly, W.: A novel multi-class brain tumor classification method based on unsupervised PCANet features. Neural Comput. Appl. 35, 11043–11059 (2023)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. UmaMaheswaran, S.K., Ahmad, F., Hegde, R., Alwakeel, A.M., Zahra, S.R.: Enhanced non-contrast computed tomography images for early acute stroke detection using machine learning approach. Expert Syst. Appl. 240, 122559 (2024)

    Article  Google Scholar 

  19. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV). pp. 3–19 (2018)

    Google Scholar 

  20. Xia, J., Zhou, Y., Tan, L.: DBGA-Net: Dual branch global-local attention network for remote sensing scene classification. IEEE Geoscience and Remote Sensing Letters (2023)

    Google Scholar 

  21. Xiao, Y., Yin, H., Wang, S.H., Zhang, Y.D.: TReC: Transferred ResNet and CBAM for detecting brain diseases. Front. Neuroinform. 15, 781551 (2021)

    Article  Google Scholar 

  22. Zhu, H., Wang, W., Ulidowski, I., Zhou, Q., Wang, S., Chen, H., Zhang, Y.: MEEDNets: Medical image classification via ensemble bio-inspired evolutionary DenseNets. Knowl.-Based Syst. 280, 111035 (2023)

    Article  Google Scholar 

  23. Zulfiqar, F., Bajwa, U.I., Mehmood, Y.: Multi-class classification of brain tumor types from MR images using efficientnets. Biomed. Signal Process. Control 84, 104777 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dhar, J., Rana, K., Goyal, P. (2025). Uncertainty-RIFA-Net: Uncertainty Aware Robust Information Fusion Attention Network for Brain Tumors Classification in MRI Images. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15327. Springer, Cham. https://doi.org/10.1007/978-3-031-78398-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78398-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78397-5

  • Online ISBN: 978-3-031-78398-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics