Skip to main content

Synthetic Images with Dense Annotations and Ensemble Learning for DFU Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

Automated image segmentation technology for Diabetic foot ulcer (DFU) management is pivotal in alleviating the healthcare system’s workload, considering the severity of DFU as a complication for diabetics. Due to the constraints of annotation costs and privacy, the scale of the publicly available DFU image segmentation datasets is relatively small, which greatly limits the performance improvement of deep learning models. We explore the potential of synthetic image technology in enhancing the performance of DFU image segmentation. We use the FreestyleNet model to generate high-quality synthetic images and employ an error pixel filtering strategy to handle the discrepancies between the synthetic images and masks. To improve the effectiveness and diversity of the synthetic dataset, we specifically designed a mask difficulty calculation method for DFU synthetic images and proposed two innovative resampling strategies based on it. The efficacy of the novel resampling strategies has been demonstrated through comparative experiments conducted against the average sampling method. Furthermore, integrating synthetic image technology with ensemble learning strategies elevates model performance even higher. Our approach achieved a Dice of 73.72% in the Diabetic Foot Ulcer Challenge 2022 on MICCAI 2022, better than the 72.87% Dice that ranked first in the testing phase, ranking second on the Live Leaderboard (as of July 5, 2024). Our code will be released at https://github.com/xupin262/Synthetic_DFU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armstrong, D.G., Boulton, A.J., Bus, S.A.: Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 376(24), 2367–2375 (2017)

    Article  Google Scholar 

  2. Breiman, L.: Bagging predictors. Machine learning 24, 123–140 (1996)

    Google Scholar 

  3. Brüngel, R., Koitka, S., Friedrich, C.M.: Unconditionally generated and pseudo-labeled synthetic images for diabetic foot ulcer segmentation dataset extension. In: Yap, M.H., Kendrick, C., Cassidy, B. (eds.) Diabetic Foot Ulcers Grand Challenge, vol. 13797, pp. 65–79. Springer International Publishing, Cham (2023)

    Chapter  Google Scholar 

  4. Chae, H.J., Lee, S., Son, H., Han, S., Lim, T.: Generating 3d bio-printable patches using wound segmentation and reconstruction to treat diabetic foot ulcers. In: Computer Vision and Pattern Recognition (CVPR). pp. 2539–2549. IEEE (2022)

    Google Scholar 

  5. Chen, C., Xiong, Z., Tian, X., Zha, Z.J., Wu, F.: Real-world image denoising with deep boosting. IEEE Trans. Pattern Anal. Mach. Intell. 42(12), 3071–3087 (2019)

    Article  Google Scholar 

  6. Edmonds, M., Manu, C., Vas, P.: The current burden of diabetic foot disease. Clinical Orthopaedics and Trauma 17, 88–93 (2021)

    Article  Google Scholar 

  7. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Conference on Machine Learning (ICML). pp. 148–156. Citeseer, Bari, Italy (1996)

    Google Scholar 

  8. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  9. Hassib, M., Ali, M., Mohamed, A., Torki, M., Hussein, M.: Diabetic foot ulcer segmentation using convolutional and transformer-based models. In: Diabetic Foot Ulcers Grand Challenge, vol. 13797, pp. 83–91. Springer, Cham (2023)

    Google Scholar 

  10. Kataoka, H., Hayamizu, R., Yamada, R., Nakashima, K., Takashima, S., Zhang, X., Martinez-Noriega, E.J., Inoue, N., Yokota, R.: Replacing labeled real-image datasets with auto-generated contours. In: Computer Vision and Pattern Recognition (CVPR). pp. 21232–21241. IEEE, New Orleans, Louisiana, USA (2022)

    Google Scholar 

  11. Kendrick, C., Cassidy, B., Pappachan, J.M., O’Shea, C., Fernandez, C.J., Chacko, E., Jacob, K., Reeves, N.D., Yap, M.H.: Translating clinical delineation of diabetic foot ulcers into machine interpretable segmentation. arXiv:2204.11618 (2022)

  12. Kim, H.C., Pang, S., Je, H.M., Kim, D., Bang, S.Y.: Support vector machine ensemble with bagging. In: Pattern Recognition with Support Vector Machines, vol. 2388, pp. 397–408. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

    Google Scholar 

  13. Kingma, D.P., Welling, M.: Auto-Encoding variational bayes (2022)

    Google Scholar 

  14. Li, J., Chang, H., Yang, J.: Sparse deep stacking network for image classification. In: AAAI Conference on Artificial Intelligence (AAAI). vol. 29. AAAI, Austin, Texas USA (2015)

    Google Scholar 

  15. Li, K., Yin, J., Lu, Z., Kong, X., Zhang, R., Liu, W.: Multiclass boosting svm using different texture features in hep-2 cell staining pattern classification. In: International Conference on Pattern Recognition (ICPR). pp. 170–173. IEEE (2012)

    Google Scholar 

  16. Lo, Z.J., Surendra, N.K., Saxena, A., Car, J.: Clinical and economic burden of diabetic foot ulcers: a 5-year longitudinal multi-ethnic cohort study from the tropics. Int. Wound J. 18(3), 375–386 (2021)

    Article  Google Scholar 

  17. Mohammed, A., Kora, R.: A comprehensive review on ensemble deep learning: Opportunities and challenges. Journal of King Saud University-Computer and Information Sciences 35(2), 757–774 (2023)

    Article  Google Scholar 

  18. Odegua, R.: An empirical study of ensemble techniques (bagging, boosting and stacking). In: Deep Learning IndabaX. pp. 1–10. University of Lagos, Abuja, Nigeria (2019)

    Google Scholar 

  19. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Computer Vision and Pattern Recognition (CVPR). pp. 2337–2346. IEEE, Long Beach, CA, USA (2019)

    Google Scholar 

  20. Ploderer, B., Clark, D., Brown, R., Harman, J., Lazzarini, P.A., Van Netten, J.J.: Self-monitoring diabetes-related foot ulcers with the myfootcare app: A mixed methods study. Sensors 23(5), 2547 (2023)

    Article  Google Scholar 

  21. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from computer games. In: European Conference on Computer Vision (ECCV). pp. 102–118. Springer, Amsterdam, Netherlands (2016)

    Google Scholar 

  22. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T.: Photorealistic text-to-image diffusion models with deep language understanding. In: Neural Information Processing Systems (NeurIPS). pp. 36479–36494. MIT, New Orleans, USA (2022)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  24. Smyth, P., Wolpert, D.: Stacked density estimation. In: Neural Information Processing Systems (NeurIPS). pp. 668–674. MIT, Denver, USA (1997)

    Google Scholar 

  25. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning (ICML). pp. 2256–2265. ACM, Lille, France (2015)

    Google Scholar 

  26. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR). pp. 1–9. IEEE, Boston, MA, USA (2015)

    Google Scholar 

  27. Tan, Z., Chai, M., Chen, D., Liao, J., Chu, Q., Liu, B., Hua, G., Yu, N.: Diverse semantic image synthesis via probability distribution modeling. In: Computer Vision and Pattern Recognition (CVPR). pp. 7962–7971. IEEE, Virtual (2021)

    Google Scholar 

  28. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Neural Information Processing Systems (NeurIPS). pp. 5998–6008. MIT, Long Beach, USA (2017)

    Google Scholar 

  29. Wang, C., Mahbod, A., Ellinger, I., Galdran, A., Gopalakrishnan, S., Niezgoda, J., Yu, Z.: FUSeg: The foot ulcer segmentation challenge (2022)

    Google Scholar 

  30. Xue, H., Huang, Z., Sun, Q., Song, L., Zhang, W.: Freestyle layout-to-image synthesis (2023)

    Google Scholar 

  31. Yang, L., Xu, X., Kang, B., Shi, Y., Zhao, H.: FreeMask: Synthetic images with dense annotations make stronger segmentation models. In: Neural Information Processing Systems (NeurIPS). pp. 1–17. MIT (2023)

    Google Scholar 

  32. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: IEEE/CVF International Conference on Computer Vision (ICCV). pp. 3836–3847. IEEE, Paris, France (2023)

    Google Scholar 

  33. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton, FL (2012)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2022YFF0606303, the National Natural Science Foundation of China under Grant 62206054, Research Capacity Enhancement Project of Key Construction Discipline in Guangdong Province under Grant 2022ZDJS028, and the Guangdong Basic and Applied Basic Research Foundation (No.2023B1515120058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, P., Xiao, X., Yuen, W., Li, Y., Li, K., Yin, J. (2025). Synthetic Images with Dense Annotations and Ensemble Learning for DFU Segmentation. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15327. Springer, Cham. https://doi.org/10.1007/978-3-031-78398-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78398-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78397-5

  • Online ISBN: 978-3-031-78398-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics