Skip to main content

Leveraging Cross-Augmentation Consensus and Conflict for Semi-supervised Semantic Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15327))

Included in the following conference series:

  • 131 Accesses

Abstract

Semi-supervised semantic segmentation leverages both labeled and unlabeled images to accomplish pixel-wise classification task. Within this field, the weak-to-strong consistency regularization has been widely popularized and has become a standard approach. However, unidirectional regularization often leads to the ignorance of correct but filtered predictions and brings the noise of wrong but confident predictions. To address these inherent flaws, we fully leverage Cross-Augmentation Consensus and Conflict (CACC), including Augmentation Feedback Mechanism (AFM) and Category Threshold Controller (CTC). AFM aims to mitigate the influence of incorrect predictions with high-confidence and mine unconfident but accurate predictions by re-weighting the pixel-wise pseudo supervision and applying supplementary regularization. Concurrently, CTC adopts category-specific thresholds by considering the model’s overall performance and the varying category-specific learning difficulty. Experimental results on benchmark datasets demonstrate the superior performance of our method, showcasing its effectiveness in improving semi-supervised semantic segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The standard deviation will be provided in Sec. A in the supplementary material.

References

  1. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV. pp. 801–818 (2018)

    Google Scholar 

  2. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene understanding. In: CVPR. pp. 3213–3223 (2016)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR. pp. 248–255. Ieee (2009)

    Google Scholar 

  4. Ding, C., Zhang, J., Ding, H., Zhao, H., Wang, Z., Xing, T., Hu, R.: Decoupling with entropy-based equalization for semi-supervised semantic segmentation. In: IJCAI. pp. 663–671 (2023)

    Google Scholar 

  5. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman: The pascal visual object classes challenge: A retrospective. IJCV pp. 98–136 (2015)

    Google Scholar 

  6. Fan, S., Zhu, F., Feng, Z., Lv, Y., Song, M., Wang, F.Y.: Conservative-progressive collaborative learning for semi-supervised semantic segmentation. TIP (2023)

    Google Scholar 

  7. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV. pp. 991–998. IEEE (2011)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR. pp. 770–778 (2016)

    Google Scholar 

  9. Hu, H., Wei, F., Hu, H., Ye, Q., Cui, J., Wang, L.: Semi-supervised semantic segmentation via adaptive equalization learning. NeurIPS 34, 22106–22118 (2021)

    Google Scholar 

  10. Jin, Y., Wang, J., Lin, D.: Semi-supervised semantic segmentation via gentle teaching assistant. NeurIPS 35, 2803–2816 (2022)

    Google Scholar 

  11. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: ICML. vol. 3, p. 896. Atlanta (2013)

    Google Scholar 

  12. Li, J., Dai, H., Han, H., Ding, Y.: Mseg3d: Multi-modal 3d semantic segmentation for autonomous driving. In: CVPR. pp. 21694–21704 (2023)

    Google Scholar 

  13. Li, S., He, Y., Zhang, W., Zhang, W., Tan, X., Han, J., Ding, E., Wang, J.: Cfcg: Semi-supervised semantic segmentation via cross-fusion and contour guidance supervision. In: ICCV. pp. 16348–16358 (2023)

    Google Scholar 

  14. Liu, S., Zhi, S., Johns, E., Davison, A.: Bootstrapping semantic segmentation with regional contrast. In: ICLR (2021)

    Google Scholar 

  15. Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G.: Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: CVPR. pp. 4258–4267 (2022)

    Google Scholar 

  16. Lv, X., Persello, C., Huang, X., Ming, D., Stein, A.: Deepmerge: Deep learning-based region-merging for image segmentation. arXiv preprint arXiv:2305.19787 (2023)

  17. Ma, J., Wang, C., Liu, Y., Lin, L., Li, G.: Enhanced soft label for semi-supervised semantic segmentation. In: ICCV. pp. 1185–1195 (2023)

    Google Scholar 

  18. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evaluation of deep semi-supervised learning algorithms. NeurIPS 31 (2018)

    Google Scholar 

  19. Pan, W., Xu, Z., Yan, J., Wu, Z., Tong, R.K.y., Li, X., Yao, J.: Semi-supervised semantic segmentation meets masked modeling: Fine-grained locality learning matters in consistency regularization. arXiv preprint arXiv:2312.08631 (2023)

  20. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C.A., Cubuk, E.D., Kurakin, A., Li, C.L.: Fixmatch: Simplifying semi-supervised learning with consistency and confidence. NeurIPS 33, 596–608 (2020)

    Google Scholar 

  21. Sun, B., Yang, Y., Zhang, L., Cheng, M.M., Hou, Q.: Corrmatch: Label propagation via correlation matching for semi-supervised semantic segmentation. arXiv preprint arXiv:2306.04300 (2023)

  22. Wang, C., Xie, H., Yuan, Y., Fu, C., Yue, X.: Space engage: Collaborative space supervision for contrastive-based semi-supervised semantic segmentation. In: ICCV. pp. 931–942 (2023)

    Google Scholar 

  23. Wang, H., Li, X.: Dhc: Dual-debiased heterogeneous co-training framework for class-imbalanced semi-supervised medical image segmentation. In: MICCAI. pp. 582–591 (2023)

    Google Scholar 

  24. Wang, X., Zhang, B., Yu, L., Xiao, J.: Hunting sparsity: Density-guided contrastive learning for semi-supervised semantic segmentation. In: CVPR. pp. 3114–3123 (2023)

    Google Scholar 

  25. Wang, Y., Wang, H., Shen, Y., Fei, J., Li, W., Jin, G., Wu, L., Zhao, R., Le, X.: Semi-supervised semantic segmentation using unreliable pseudo-labels. In: CVPR. pp. 4248–4257 (2022)

    Google Scholar 

  26. Wang, Z., Zhao, Z., Xing, X., Xu, D., Kong, X., Zhou, L.: Conflict-based cross-view consistency for semi-supervised semantic segmentation. In: CVPR. pp. 19585–19595 (2023)

    Google Scholar 

  27. Xie, H., Wang, C., Zheng, M., Dong, M., You, S., Fu, C., Xu, C.: Boosting semi-supervised semantic segmentation with probabilistic representations. In: AAAI. pp. 2938–2946 (2023)

    Google Scholar 

  28. Xu, H., Liu, L., Bian, Q., Yang, Z.: Semi-supervised semantic segmentation with prototype-based consistency regularization. Adv. Neural. Inf. Process. Syst. 35, 26007–26020 (2022)

    Google Scholar 

  29. Yang, L., Qi, L., Feng, L., Zhang, W., Shi, Y.: Revisiting weak-to-strong consistency in semi-supervised semantic segmentation. In: CVPR. pp. 7236–7246 (2023)

    Google Scholar 

  30. Yuan, J., Ge, J., Wang, Z., Liu, Y.: Semi-supervised semantic segmentation with mutual knowledge distillation. In: ACMMM. pp. 5436–5444 (2023)

    Google Scholar 

  31. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization strategy to train strong classifiers with localizable features. In: ICCV. pp. 6023–6032 (2019)

    Google Scholar 

  32. Zhao, Z., Long, S., Pi, J., Wang, J., Zhou, L.: Instance-specific and model-adaptive supervision for semi-supervised semantic segmentation. In: CVPR. pp. 23705–23714 (2023)

    Google Scholar 

  33. Zhao, Z., Yang, L., Long, S., Pi, J., Zhou, L., Wang, J.: Augmentation matters: A simple-yet-effective approach to semi-supervised semantic segmentation. In: CVPR. pp. 11350–11359 (2023)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by Natural Science Foundation of Guangdong Province of China Under Grant No. 2024A1515011741, and partly supported by National Natural Science Foundation of China under Grant No. 62376292.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyu Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3406 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, J., Chen, J., Huang, S., Zhang, D. (2025). Leveraging Cross-Augmentation Consensus and Conflict for Semi-supervised Semantic Segmentation. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15327. Springer, Cham. https://doi.org/10.1007/978-3-031-78398-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78398-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78397-5

  • Online ISBN: 978-3-031-78398-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics