Skip to main content

Event-Aware Multi-component (EMl) Loss for Fraud Detection

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15327))

Included in the following conference series:

  • 124 Accesses

Abstract

Fraudulent transactions affect the different entities involved in the payment pipeline: (i) the merchant/vendor at which the transaction is performed, (ii) the authorizing bank, (iii) the card-holder, and (iv) the payment processing network/gateway. While fraud transactions result in the loss of billions of dollars globally, they may also result in reputational damage to the involved parties. Detecting fraudulent transactions is thus of utmost importance for the business and it also enhances customer experience in the financial domain. Predicting fraud transactions involves identifying suspicious transactions at the time of authorization and raising an alert to the decision-making authority. This research proposes a novel Event-aware Multi-component (EMl) loss for fraud prediction which incorporates key fraud-specific characteristics for learning a robust and accurate fraud prediction model. Specifically, the proposed loss incorporates key domain characteristics of fraud modeling such as focusing more on recent transactions, optimizing for an ideal event (fraud) rate, and maximizing the net benefit (or fraud savings) seen by the fraud prediction model. Further, the proposed loss is agnostic to the model architecture and can be utilized with different backbone architectures. Experimental results and analysis on multiple datasets demonstrate the efficacy of the proposed loss, where it achieves improved detection performance while optimizing for the above-mentioned industry requirements.

All authors were with AI Garage, Mastercard, India at the time of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.statista.com/statistics/1273177/ecommerce-payment-fraud-losses-globally/.

References

  1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: A survey. J. Netw. Comput. Appl. 68, 90–113 (2016). https://doi.org/10.1016/j.jnca.2016.04.007

    Article  Google Scholar 

  2. AbdulSattar, K., Hammad, M.: Fraudulent transaction detection in fintech using machine learning algorithms. In: International Conference on Innovation and Intelligence for Informatics, Computing and Technologies. pp. 1–6 (2020)

    Google Scholar 

  3. Altman, E.: Synthesizing credit card transactions. In: ACM International Conference on AI in Finance. pp. 1–9 (2021)

    Google Scholar 

  4. Babaev, D., Savchenko, M., Tuzhilin, A., Umerenkov, D.: ET-RNN: Applying deep learning to credit loan applications. In: SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 2183–2190 (2019)

    Google Scholar 

  5. Beneish, M.D., Vorst, P.: The cost of fraud prediction errors. Kelley School of Business Research Paper (2020-55) (2021)

    Google Scholar 

  6. Bolton, R.J., Hand, D.J.: Statistical fraud detection: A review. Stat. Sci. 17(3), 235–255 (2002)

    Article  MathSciNet  Google Scholar 

  7. Branco, B., Abreu, P., Gomes, A.S., Almeida, M.S., Ascensão, J.T., Bizarro, P.: Interleaved sequence rnns for fraud detection. In: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 3101–3109 (2020)

    Google Scholar 

  8. Brause, R., Langsdorf, T., Hepp, M.: Neural data mining for credit card fraud detection. In: International Conference on Tools with Artificial Intelligence. pp. 103–106 (1999)

    Google Scholar 

  9. Chen, J.I.Z., Lai, K.L.: Deep convolution neural network model for credit-card fraud detection and alert. J. Artif. Intell. 3(02), 101–112 (2021)

    Google Scholar 

  10. Chen, L., Zhang, Z., Liu, Q., Yang, L., Meng, Y., Wang, P.: A method for online transaction fraud detection based on individual behavior. In: ACM Turing Celebration Conference - China (2019)

    Google Scholar 

  11. Cheng, D., Wang, X., Zhang, Y., Zhang, L.: Graph neural network for fraud detection via spatial-temporal attention. IEEE Trans. Knowl. Data Eng. 34(8), 3800–3813 (2020)

    Article  Google Scholar 

  12. Cheng, D., Xiang, S., Shang, C., Zhang, Y., Yang, F., Zhang, L.: Spatio-temporal attention-based neural network for credit card fraud detection. AAAI Conference on Artificial Intelligence pp. 362–369 (2020)

    Google Scholar 

  13. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  14. Dal Pozzolo, A., Caelen, O., Le Borgne, Y.A., Waterschoot, S., Bontempi, G.: Learned lessons in credit card fraud detection from a practitioner perspective. Expert Syst. Appl. 41(10), 4915–4928 (2014)

    Article  Google Scholar 

  15. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  16. Gramopadhye, M., Singh, S., Agarwal, K., Srivasatava, N., Singh, A.M., Asthana, S., Arora, A.: CuRL: Coupled representation learning of cards and merchants to detect transaction frauds. In: International Conference on Artificial Neural Networks. pp. 16–29 (2021)

    Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.E., He-Guelton, L., Caelen, O.: Sequence classification for credit-card fraud detection. Expert Syst. Appl. 100, 234–245 (2018)

    Article  Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Li, J., Huang, K., Jin, J., Shi, J.: A survey on statistical methods for health care fraud detection. Health Care Manag. Sci. 11(3), 275–287 (2008). https://doi.org/10.1007/s10729-007-9045-4

    Article  Google Scholar 

  21. Lim, K.S., Lee, L.H., Sim, Y.W.: A review of machine learning algorithms for fraud detection in credit card transaction. International Journal of Computer Science & Network Security 21(9), 31–40 (2021)

    Google Scholar 

  22. Lin, W., Sun, L., Zhong, Q., Liu, C., Feng, J., Ao, X., Yang, H.: Online credit payment fraud detection via structure-aware hierarchical recurrent neural network. In: International Joint Conference on Artificial Intelligence. pp. 3670–3676 (2021). 10.24963/ijcai.2021/505

    Google Scholar 

  23. Lucas, Y., Jurgovsky, J.: Credit card fraud detection using machine learning: A survey. arXiv preprint arXiv:2010.06479 (2020)

  24. Padhi, I., Schiff, Y., Melnyk, I., Rigotti, M., Mroueh, Y., Dognin, P., Ross, J., Nair, R., Altman, E.: Tabular transformers for modeling multivariate time series. In: IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 3565–3569 (2021)

    Google Scholar 

  25. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  26. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  27. Stolfo, S.J., Fan, W., Lee, W., Prodromidis, A., Chan, P.K.: Cost-based modeling for fraud and intrusion detection: Results from the jam project. In: Proceedings DARPA Information Survivability Conference and Exposition. DISCEX’00. vol. 2, pp. 130–144 (2000)

    Google Scholar 

  28. Viveros, M.S., Nearhos, J.P., Rothman, M.J.: Applying data mining techniques to a health insurance information system. In: International Conference on Very Large Data Bases. p. 286-294. Morgan Kaufmann Publishers Inc. (1996)

    Google Scholar 

  29. Wang, Z., Wang, F., Zhang, H., Yang, M., Cao, S., Wen, Z., Zhang, Z.: ’Could You Describe the Reason for the Transfer?’: A Reinforcement Learning Based Voice-Enabled Bot Protecting Customers from Financial Frauds, p. 4214-4223 (2021)

    Google Scholar 

  30. Xie, Y., Liu, G., Cao, R., Li, Z., Yan, C., Jiang, C.: A feature extraction method for credit card fraud detection. In: International Conference on Intelligent Autonomous Systems. pp. 70–75 (2019)

    Google Scholar 

  31. Zhang, C., Wang, Q., Liu, T., Lu, X., Hong, J., Han, B., Gong, C.: Fraud Detection under Multi-Sourced Extremely Noisy Annotations, p. 2497-2506 (2021)

    Google Scholar 

  32. Zhang, Z., Chen, L., Liu, Q., Wang, P.: A fraud detection method for low-frequency transaction. IEEE Access 8, 25210–25220 (2020)

    Article  Google Scholar 

  33. Zhang, Z., Zhou, X., Zhang, X., Wang, L., Wang, P.: A model based on convolutional neural network for online transaction fraud detection. Security and Communication Networks (2018)

    Google Scholar 

  34. Zheng, L., Liu, G., Yan, C., Jiang, C.: Transaction fraud detection based on total order relation and behavior diversity. IEEE Transactions on Computational Social Systems 5(3), 796–806 (2018)

    Article  Google Scholar 

  35. Zheng, L., Liu, G., Yan, C., Jiang, C., Zhou, M., Li, M.: Improved tradaboost and its application to transaction fraud detection. IEEE Transactions on Computational Social Systems 7(5), 1304–1316 (2020)

    Article  Google Scholar 

  36. Zhu, Y., Xi, D., Song, B., Zhuang, F., Chen, S., Gu, X., He, Q.: Modeling users’ behavior sequences with hierarchical explainable network for cross-domain fraud detection. In: Proceedings of The Web Conference. pp. 928–938 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Somavarapu, T., Singh, A.V., Singh, M., Pandey, S., Verma, S., Agarwal, K. (2025). Event-Aware Multi-component (EMl) Loss for Fraud Detection. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15327. Springer, Cham. https://doi.org/10.1007/978-3-031-78398-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78398-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78397-5

  • Online ISBN: 978-3-031-78398-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics