Skip to main content

BarBeR: A Barcode Benchmarking Repository

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15317))

Included in the following conference series:

  • 289 Accesses

Abstract

Since their invention in 1949, barcodes have remained the preferred method for automatic data capture, playing a crucial role in supply chain management. To detect a barcode in an image, multiple algorithms have been proposed in the literature, with a significant increase of interest in the topic since the rise of deep learning. However, research in the field suffers from many limitations, including the scarcity of public datasets and code implementations, which hampers the reproducibility and reliability of published results. For this reason, we developed “BarBeR” (Barcode Benchmark Repository), a benchmark designed for testing and comparing barcode detection algorithms. This benchmark includes the code implementation of various detection algorithms for barcodes, along with a suite of useful metrics. It offers a range of test setups and can be expanded to include any localization algorithm. In addition, we provide a large, annotated dataset of 8 748 barcode images, combining multiple public barcode datasets with standardized annotation formats for both detection and segmentation tasks. Finally, we share the results obtained from running the benchmark on our dataset, offering valuable insights into the performance of different algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/zxing/zxing.

  2. 2.

    https://github.com/ZBar/ZBar.

  3. 3.

    https://github.com/Henvezz95/BarBeR.

  4. 4.

    https://ditto.ing.unimore.it/barber.

References

  1. Generate a large labelled dataset of barcodes from open food facts data (2018). https://github.com/openfoodfacts/openfoodfacts-ai/issues/15

  2. Ando, S.: Image field categorization and edge/corner detection from gradient covariance. IEEE Trans. Pattern Anal. Mach. Intell. 22(2), 179–190 (2000)

    Article  Google Scholar 

  3. Bodnár, P., Grósz, T., Tóth, L., Nyúl, L.G.: Efficient visual code localization with neural networks. Pattern Anal. Appl. 21, 249–260 (2018)

    Article  MathSciNet  Google Scholar 

  4. Chai, D., Hock, F.: Locating and decoding EAN-13 barcodes from images captured by digital cameras. In: 2005 5th International Conference on Information Communications & Signal Processing, pp. 1595–1599 (2005)

    Google Scholar 

  5. Chang, S.K., Yang, C.C.: Picture information measures for similarity retrieval. Comput. Vis. Graph. Image Process. 23(3), 366–375 (1983)

    Article  MathSciNet  Google Scholar 

  6. Chou, T.H., Ho, C.S., Kuo, Y.F.: QR code detection using convolutional neural networks. In: International Conference on Advanced Robotics and Intelligent Systems (ARIS), pp. 1–5 (2015)

    Google Scholar 

  7. Do, T., Kim, D.: Quick browser: a unified model to detect and read simple object in real-time. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2021)

    Google Scholar 

  8. Dubská, M., Herout, A., Havel, J.: Real-time precise detection of regular grids and matrix codes. J. Real-Time Image Proc. 11, 193–200 (2016)

    Article  Google Scholar 

  9. Galamhos, C., Matas, J., Kittler, J.: Progressive probabilistic Hough transform for line detection. In: 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 554–560 (1999)

    Google Scholar 

  10. Gallo, O., Manduchi, R.: Reading 1D barcodes with mobile phones using deformable templates. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1834–1843 (2010)

    Article  Google Scholar 

  11. Hansen, D.K., Nasrollahi, K., Rasmussen, C.B., Moeslund, T.B.: Real-time barcode detection and classification using deep learning. In: International Joint Conference on Computational Intelligence, pp. 321–327 (2017)

    Google Scholar 

  12. Hu, H., Xu, W., Huang, Q.: A 2D barcode extraction method based on texture direction analysis. In: 2009 Fifth International Conference on Image and Graphics, pp. 759–762 (2009)

    Google Scholar 

  13. Jain, A.K., Chen, Y.: Bar code localization using texture analysis. In: Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR 1993), pp. 41–44 (1993)

    Google Scholar 

  14. Jain, A.K., Karu, K.: Learning texture discrimination masks. IEEE Trans. Pattern Anal. Mach. Intell. 18(2), 195–205 (1996)

    Article  Google Scholar 

  15. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8 (2023)

    Google Scholar 

  16. Kamnardsiri, T., Charoenkwan, P., Malang, C., Wudhikarn, R.: 1D barcode detection: novel benchmark datasets and comprehensive comparison of deep convolutional neural network approaches. Sensors 22(22), 8788 (2022)

    Article  Google Scholar 

  17. Kapsambelis, C.: Bar codes aren’t going away! (2005)

    Google Scholar 

  18. Klimek, G., Vamossy, Z.: QR code detection using parallel lines. In: 2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 477–481 (2013)

    Google Scholar 

  19. Kubáňová, J., Kubasáková, I., Čulík, K., Štítik, L.: Implementation of barcode technology to logistics processes of a company. Sustainability 14(2), 790 (2022)

    Article  Google Scholar 

  20. Li, J., Zhao, Q., Tan, X., Luo, Z., Tang, Z.: Using deep ConvNet for robust 1D barcode detection. In: Advances in Intelligent Systems and Interactive Applications: Proceedings of the 2nd International Conference on Intelligent and Interactive Systems and Applications (IISA 2017), pp. 261–267 (2018)

    Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  22. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014, Proceedings, Part V 13, pp. 740–755 (2014)

    Google Scholar 

  23. Lv, W., et al.: DETRs beat YOLOs on real-time object detection. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  24. McCathie, L.: The advantages and disadvantages of barcodes and radio frequency identification in supply chain management. Ph.D. thesis, School of Information Technology and Computer Science (2004)

    Google Scholar 

  25. Melek, C.G., et al.: Datasets and methods of product recognition on grocery shelf images using computer vision and machine learning approaches: an exhaustive literature review. Eng. Appl. Artif. Intell. 133 (2024)

    Google Scholar 

  26. Muniz, R., Junco, L., Otero, A.: A robust software barcode reader using the Hough transform. In: Proceedings 1999 International Conference on Information Intelligence and Systems (Cat. No. PR00446), pp. 313–319 (1999)

    Google Scholar 

  27. Ottaviani, E., et al.: A common image processing framework for 2D barcode reading. In: 1999 Seventh International Conference on Image Processing and Its Applications (Conf. Publ. No. 465), vol. 2, pp. 652–655 (1999)

    Google Scholar 

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  29. Soliman, A., et al.: AI-based UAV navigation framework with digital twin technology for mobile target visitation. Eng. Appl. Artif. Intell. 123, 106318 (2023)

    Article  Google Scholar 

  30. Sörös, G., Flörkemeier, C.: Blur-resistant joint 1D and 2D barcode localization for smartphones. In: Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia, pp. 1–8 (2013)

    Google Scholar 

  31. Szentandrási, I., Herout, A., Dubská, M.: Fast detection and recognition of QR codes in high-resolution images. In: Proceedings of the 28th Spring Conference on Computer Graphics, pp. 129–136 (2012)

    Google Scholar 

  32. Taveerad, N., Vongpradhip, S.: Development of color QR code for increasing capacity. In: 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), pp. 645–648 (2015)

    Google Scholar 

  33. Mate, V.S., Mutreja, S.: Barcode reader market size, share, competitive landscape and trend analysis report by type, by application: global opportunity analysis and industry forecast, 2023–2032 (2023)

    Google Scholar 

  34. Viard-Gaudin, C., Normand, N., Barba, D.: A bar code location algorithm using a two-dimensional approach. In: Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR 1993), pp. 45–48 (1993)

    Google Scholar 

  35. Wachenfeld, S., Terlunen, S., Jiang, X.: Robust recognition of 1-D barcodes using camera phones. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  36. Weng, D., Yang, L.: Design and implementation of barcode management information system. In: Information Engineering and Applications: International Conference on Information Engineering and Applications, pp. 1200–1207 (2012)

    Google Scholar 

  37. Wudhikarn, R., Charoenkwan, P., Malang, K.: Deep learning in barcode recognition: a systematic literature review. IEEE Access 10, 8049–8072 (2022)

    Article  Google Scholar 

  38. Yun, I., Kim, J.: Vision-based 1D barcode localization method for scale and rotation invariant. In: TENCON - IEEE Region 10 Conference, pp. 2204–2208 (2017)

    Google Scholar 

  39. Zamberletti, A., et al.: Neural image restoration for decoding 1-D barcodes using common camera phones. In: VISAPP (1), pp. 5–11 (2010)

    Google Scholar 

  40. Zamberletti, A., et al.: Robust angle invariant 1D barcode detection. In: 2013 2nd IAPR Asian Conference on Pattern Recognition, pp. 160–164 (2013)

    Google Scholar 

  41. Zharkov, A., Zagaynov, I.: Universal barcode detector via semantic segmentation. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 837–843 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the University of Modena and Reggio Emilia and Fondazione di Modena, through the FAR 2023 and FARD-2023 funds (Fondo di Ateneo per la Ricerca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Bolelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vezzali, E., Bolelli, F., Santi, S., Grana, C. (2025). BarBeR: A Barcode Benchmarking Repository. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15317. Springer, Cham. https://doi.org/10.1007/978-3-031-78447-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78447-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78446-0

  • Online ISBN: 978-3-031-78447-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics