Skip to main content

A Deep-Learning Based Real-Time License Plate Recognition System for Resource-Constrained Scenarios

  • Conference paper
  • First Online:
Pattern Recognition (ICPR 2024)

Abstract

License Plate Recognition plays a pivotal role in modern traffic law enforcement, ensuring public safety and order. However, conventional surveillance systems such as CCTVs and static cameras lack real-time response capabilities and have limited mobility. With the growing number of vehicles, the requirement for automated and mobile methods for license plate recognition has soared. The noisy and dynamic environment of license plates further exacerbates this issue. While Deep Learning (DL) can help automate such tasks, the computational demands of DL pose a significant hurdle for real-time usage and mobility. In this regard, the declining costs and enhanced computational capabilities of microcontrollers offer promising potential for enabling the implementation of DL-based techniques in license plate recognition in resource-constrained scenarios. This paper introduces an approach for automated license plate recognition designed to guarantee mobility and real-time responsiveness. The proposed framework integrates various elements, encompassing microcontrollers, Internet of Things (IoT), Deep Neural Networks, and computer vision technologies. Furthermore, to alleviate the computational overhead on the microcontroller, the system leverages Transfer Learning and Cloud Computing for enhanced efficiency. The system was tested for real-time performance using a camera onboard a microcontroller, which was used to detect the license plates. The system delivered good accuracy for license plate recognition, both across existing datasets and for real-time images on multiple metrics. This system can also be integrated with wearable devices such as helmets or goggles and used by traffic law officials to facilitate easy monitoring and surveillance of traffic laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. Global Status Report on Road Safety (2023). https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023

  2. Shashirangana, J., Padmasiri, H., Meedeniya, D., Perera, C.: Automated license plate recognition: a survey on methods and techniques. IEEE Access. 9, 11203–11225 (2020). https://doi.org/10.1109/ACCESS.2020.3047929

    Article  Google Scholar 

  3. Shafi, I., Hussain, I., Ahmad, J., et al.: License plate identification and recognition in a non-standard environment using neural pattern matching. Complex Intell. Syst. 8, 3627–3639 (2022). https://doi.org/10.1007/s40747-021-00419-5

    Article  Google Scholar 

  4. Lubna Mufti, N., Shah, S.A.A.: Automatic number plate recognition: a detailed survey of relevant algorithms. Sensors. 21(9), 3028 (2021). https://doi.org/10.3390/s21093028

  5. Kanteti, D., Srikar, D.V.S., Ramesh, T.K.: Intelligent smart parking algorithm. In: 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), pp. 1018–1022. IEEE (2017)

    Google Scholar 

  6. Wang, W., Tu, J.: Research on license plate recognition algorithms based on deep learning in complex environment. IEEE Access. 1–1 (2020). https://doi.org/10.1109/ACCESS.2020.2994287

  7. Padmasiri, H., Shashirangana, J., Meedeniya, D., Rana, O., Perera, C.: Automated license plate recognition for resource-constrained environments. Sensors 22, 1434 (2022). https://doi.org/10.3390/s22041434

    Article  Google Scholar 

  8. Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., Zhang, Y.: A robust attentional framework for license plate recognition in the wild. IEEE Trans. Intell. Transp. Syst. 22(11), 6967–6976 (2021). https://doi.org/10.1109/TITS.2020.3000072

    Article  Google Scholar 

  9. Pustokhina, I.V., et al.: Automatic vehicle license plate recognition using optimal k-means with convolutional neural network for intelligent transportation systems. IEEE Access 8, 92907–92917 (2020). https://doi.org/10.1109/ACCESS.2020.2993008

    Article  Google Scholar 

  10. Björklund, T., Fiandrotti, A., Annarumma, M., Francini, G., Magli, E.: Robust license plate recognition using neural networks trained on synthetic images. Pattern Recogn. 93, 134–146 (2019). https://doi.org/10.1016/j.patcog.2019.04.007

    Article  Google Scholar 

  11. Shobayo, O., Olajube, A., Ohere, N., Odusami, M., Okoyeigbo, O.: Development of smart plate number recognition system for fast cars with web application. Appl. Comput. Intell. Soft Comput. 2020, 8535861 (2020). https://doi.org/10.1155/2020/8535861

    Article  Google Scholar 

  12. Mishra, B., Kertesz, A.: The use of MQTT in M2M and IoT systems: a survey. IEEE Access 8, 201071–201086 (2020). https://doi.org/10.1109/ACCESS.2020.3035849

    Article  Google Scholar 

  13. Chollet, F., et al.: Keras. GitHub (2015). https://github.com/fchollet/keras

  14. Mart’in, A., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \$USENIX\$ Symposium on Operating Systems Design and Implementation (\$OSDI\$ 16), pp. 265–283 (2016)

    Google Scholar 

  15. Kluyver, T., et al.: Jupyter Notebooks - a publishing format for reproducible computational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90 (2016)

    Google Scholar 

  16. Hsu, G.-S., Chen, J.-C., Chung, Y.-Z.: Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2013). https://doi.org/10.1109/TVT.2012.2226218

    Article  Google Scholar 

  17. Xu, Z., et al.: Towards end-to-end license plate detection and recognition: a large dataset and baseline. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 261–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_16

    Chapter  Google Scholar 

  18. Hsieh, J.W., Yu, S.H., Chen, Y.S.: Morphology-based license plate detection from complex scenes. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 3, pp. 176–179. IEEE (2002)

    Google Scholar 

  19. Wu, H.H.P., Chen, H.H., Wu, R.J., Shen, D.F.: License plate extraction in low resolution video. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 1, pp. 824–827. IEEE (2006)

    Google Scholar 

  20. Sarfraz, M., Ahmed, M.J., Ghazi, S.A.: Saudi Arabian license plate recognition system. In: Proceedings of International Conference on Geometric Modeling Graph, pp. 36–41 (2003)

    Google Scholar 

  21. Luo, L., Sun, H., Zhou, W., Luo, L.: An efficient method of license plate location. In: Proceedings of 1st International Conference on Information Science Engineering, pp. 770–773 (2009)

    Google Scholar 

  22. Heo, G., Kim, M., Jung, I., Lee, D.-R., Oh, I.-S.: Extraction of car license plate regions using line grouping and edge density methods. In: Proceedings of International Symposium on Information Technology Convergence (ISITC), pp. 37–42 (2007)

    Google Scholar 

  23. Yohimori, S., Mitsukura, Y., Fukumi, M., Akamatsu, N., Pedrycz, N.: License plate detection system by using threshold function and improved template matching method. In: Proceedings of IEEE Annual Meeting Fuzzy Information Processing (NAFIPS), vol. 1, pp. 357–362 (2004)

    Google Scholar 

  24. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  25. Jia, W., Zhang, H., He, X., Piccardi, M.: Mean shift for accurate license plate localization. In: Proceedings of IEEE Intelligent Transport System, pp. 566–571 (2005)

    Google Scholar 

  26. Yao, Z., Yi, W.: License plate detection based on multistage information fusion. Inf. Fusion 18, 78–85 (2014)

    Article  Google Scholar 

  27. Xu, H.-K., Yu, F.-H., Jiao, J.-H., Song, H.-S.: A new approach of the vehicle license plate location. In: Proceedings of 6th International Conference on Parallel Distributed Computing Application Technology (PDCAT), pp. 1055–1057 (2005)

    Google Scholar 

  28. Deb, K., Chae, H.-U., Jo, K.-H.: Vehicle license plate detection method based on sliding concentric windows and histogram. J. Comput. 4(8), 1–7 (2009)

    Article  Google Scholar 

  29. Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Loumos, V., Kayafas, E.: A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 7(3), 377–392 (2006)

    Article  Google Scholar 

  30. Xie, L., Ahmad, T., Jin, L., Liu, Y., Zhang, S.: A new CNN-based method for multi-directional car license plate detection. IEEE Trans. Intell. Transp. Syst. 19(2), 507–517 (2018)

    Article  Google Scholar 

  31. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  32. Sung, J.-Y., Yu, S.-B., S.-h. P. Korea.: Real-time automatic license plate recognition system using YOLOv4. 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia) Seoul, Korea (South), pp. 1–3 (2020). https://doi.org/10.1109/ICCE-Asia49877.2020.9277050

  33. Ke, X., Zeng, G., Guo, W.: An ultra-fast automatic license plate recognition approach for unconstrained scenarios. IEEE Trans. Intell. Transp. Syst. 24(5), 5172–5185 (2023). https://doi.org/10.1109/TITS.2023.3237581

    Article  Google Scholar 

  34. Rahman, C.A., Badawy, W., Radmanesh, A.: A real time vehicle’s license plate recognition system. In: Proceedings of IEEE Conference Advance Video Signal Based Surveilleance, pp. 163–166 (2003)

    Google Scholar 

  35. Hu, P., Zhao, Y., Yang, Z., Wang, J.: Recognition of gray character using Gabor filters. In: Proceedings of 5th International Conference on Information Fusion (FUSION), vol. 1, pp. 419–424 (2002)

    Google Scholar 

  36. Kim, K.K., Kim, K.I., Kim, J.B., Kim, H.J.: Learning-based approach for license plate recognition. In: Proceedings of Neural Network Signal Processing X, IEEE Signal Processing Soc. Workshop, vol. 2, pp. 614–623 (2000)

    Google Scholar 

  37. Llorens, D., Marzal, A., Palazón, V., Vilar, J.M.: Car license plates extraction and recognition based on connected components analysis and HMM decoding. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 571–578. Springer, Heidelberg (2005). https://doi.org/10.1007/11492429_69

    Chapter  Google Scholar 

  38. Li, H., Chunhua, S.: Reading car license plates using deep convolutional neural networks and LSTMs. arXiv preprint arXiv:1601.05610 (2016)

    Google Scholar 

  39. Wang, Y., Bian, Z.-P., Zhou, Y., Chau, L.-P.: Rethinking and designing a high-performing automatic license plate recognition approach. IEEE Trans. Intell. Transp. Syst. 23(7), 8868–8880 (2022)

    Article  Google Scholar 

  40. Zherzdev, S., Gruzdev, A.: LPRNet: license plate recognition via deep neural networks (2018). arXiv:1806.10447

  41. Ammar, A., Koubaa, A., Boulila, W., Benjdira, B., Alhabashi, Y.: A multi-stage deep-learning-based vehicle and license plate recognition system with real-time edge inference. Sensors 23(4), 2120 (2023)

    Article  Google Scholar 

  42. Abdellatif, M.M., Elshabasy, N.H., Elashmawy, A.E., AbdelRaheem, M.: A low cost IoT-based Arabic license plate recognition model for smart parking systems. Ain Shams Eng. J. 14(6), 102178 (2023)

    Article  Google Scholar 

  43. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of Advance Neural Information Processing System, pp. 91–99 (2015)

    Google Scholar 

  44. Li, H., Wang, P., Shen, C.: Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Trans. Intell. Transp. Syst. 20(3), 1126–1136 (2019)

    Article  Google Scholar 

  45. Yuan, Y.L., Zou, W.B., Zhao, Y., Wang, X., Hu, X.F., Komodakis, N.: A robust and efficient approach to license plate detection. IEEE Trans. Image Process. 26(3), 1102–1114 (2016)

    Article  MathSciNet  Google Scholar 

  46. Liu, W. et al.: SSD: single shot MultiBox detector. In: Proceedings of European Conference on Computer Vision, pp. 21–37 (2016)

    Google Scholar 

  47. Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., Zhang, Y.: A robust attentional framework for license plate recognition in the wild. IEEE Trans. Intell. Transp. Syst. (2020)

    Google Scholar 

  48. Wang, T., et al.: Decoupled attention network for text recognition. Proc. AAAI Conf. Artif. Intell. 34(7), 12216–12224 (2020)

    Google Scholar 

  49. Luo, C., Jin, L., Sun, Z.: A multi-object rectified attention network for scene text recognition (2019). arXiv:1901.03003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohan, K., Pandey, S.K. (2025). A Deep-Learning Based Real-Time License Plate Recognition System for Resource-Constrained Scenarios. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15320. Springer, Cham. https://doi.org/10.1007/978-3-031-78498-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78498-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78497-2

  • Online ISBN: 978-3-031-78498-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics