Abstract
License Plate Recognition plays a pivotal role in modern traffic law enforcement, ensuring public safety and order. However, conventional surveillance systems such as CCTVs and static cameras lack real-time response capabilities and have limited mobility. With the growing number of vehicles, the requirement for automated and mobile methods for license plate recognition has soared. The noisy and dynamic environment of license plates further exacerbates this issue. While Deep Learning (DL) can help automate such tasks, the computational demands of DL pose a significant hurdle for real-time usage and mobility. In this regard, the declining costs and enhanced computational capabilities of microcontrollers offer promising potential for enabling the implementation of DL-based techniques in license plate recognition in resource-constrained scenarios. This paper introduces an approach for automated license plate recognition designed to guarantee mobility and real-time responsiveness. The proposed framework integrates various elements, encompassing microcontrollers, Internet of Things (IoT), Deep Neural Networks, and computer vision technologies. Furthermore, to alleviate the computational overhead on the microcontroller, the system leverages Transfer Learning and Cloud Computing for enhanced efficiency. The system was tested for real-time performance using a camera onboard a microcontroller, which was used to detect the license plates. The system delivered good accuracy for license plate recognition, both across existing datasets and for real-time images on multiple metrics. This system can also be integrated with wearable devices such as helmets or goggles and used by traffic law officials to facilitate easy monitoring and surveillance of traffic laws.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Health Organization. Global Status Report on Road Safety (2023). https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
Shashirangana, J., Padmasiri, H., Meedeniya, D., Perera, C.: Automated license plate recognition: a survey on methods and techniques. IEEE Access. 9, 11203–11225 (2020). https://doi.org/10.1109/ACCESS.2020.3047929
Shafi, I., Hussain, I., Ahmad, J., et al.: License plate identification and recognition in a non-standard environment using neural pattern matching. Complex Intell. Syst. 8, 3627–3639 (2022). https://doi.org/10.1007/s40747-021-00419-5
Lubna Mufti, N., Shah, S.A.A.: Automatic number plate recognition: a detailed survey of relevant algorithms. Sensors. 21(9), 3028 (2021). https://doi.org/10.3390/s21093028
Kanteti, D., Srikar, D.V.S., Ramesh, T.K.: Intelligent smart parking algorithm. In: 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), pp. 1018–1022. IEEE (2017)
Wang, W., Tu, J.: Research on license plate recognition algorithms based on deep learning in complex environment. IEEE Access. 1–1 (2020). https://doi.org/10.1109/ACCESS.2020.2994287
Padmasiri, H., Shashirangana, J., Meedeniya, D., Rana, O., Perera, C.: Automated license plate recognition for resource-constrained environments. Sensors 22, 1434 (2022). https://doi.org/10.3390/s22041434
Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., Zhang, Y.: A robust attentional framework for license plate recognition in the wild. IEEE Trans. Intell. Transp. Syst. 22(11), 6967–6976 (2021). https://doi.org/10.1109/TITS.2020.3000072
Pustokhina, I.V., et al.: Automatic vehicle license plate recognition using optimal k-means with convolutional neural network for intelligent transportation systems. IEEE Access 8, 92907–92917 (2020). https://doi.org/10.1109/ACCESS.2020.2993008
Björklund, T., Fiandrotti, A., Annarumma, M., Francini, G., Magli, E.: Robust license plate recognition using neural networks trained on synthetic images. Pattern Recogn. 93, 134–146 (2019). https://doi.org/10.1016/j.patcog.2019.04.007
Shobayo, O., Olajube, A., Ohere, N., Odusami, M., Okoyeigbo, O.: Development of smart plate number recognition system for fast cars with web application. Appl. Comput. Intell. Soft Comput. 2020, 8535861 (2020). https://doi.org/10.1155/2020/8535861
Mishra, B., Kertesz, A.: The use of MQTT in M2M and IoT systems: a survey. IEEE Access 8, 201071–201086 (2020). https://doi.org/10.1109/ACCESS.2020.3035849
Chollet, F., et al.: Keras. GitHub (2015). https://github.com/fchollet/keras
Mart’in, A., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \$USENIX\$ Symposium on Operating Systems Design and Implementation (\$OSDI\$ 16), pp. 265–283 (2016)
Kluyver, T., et al.: Jupyter Notebooks - a publishing format for reproducible computational workflows. In: Loizides, F., Schmidt, B. (eds.) Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90 (2016)
Hsu, G.-S., Chen, J.-C., Chung, Y.-Z.: Application-oriented license plate recognition. IEEE Trans. Veh. Technol. 62(2), 552–561 (2013). https://doi.org/10.1109/TVT.2012.2226218
Xu, Z., et al.: Towards end-to-end license plate detection and recognition: a large dataset and baseline. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 261–277. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_16
Hsieh, J.W., Yu, S.H., Chen, Y.S.: Morphology-based license plate detection from complex scenes. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 3, pp. 176–179. IEEE (2002)
Wu, H.H.P., Chen, H.H., Wu, R.J., Shen, D.F.: License plate extraction in low resolution video. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 1, pp. 824–827. IEEE (2006)
Sarfraz, M., Ahmed, M.J., Ghazi, S.A.: Saudi Arabian license plate recognition system. In: Proceedings of International Conference on Geometric Modeling Graph, pp. 36–41 (2003)
Luo, L., Sun, H., Zhou, W., Luo, L.: An efficient method of license plate location. In: Proceedings of 1st International Conference on Information Science Engineering, pp. 770–773 (2009)
Heo, G., Kim, M., Jung, I., Lee, D.-R., Oh, I.-S.: Extraction of car license plate regions using line grouping and edge density methods. In: Proceedings of International Symposium on Information Technology Convergence (ISITC), pp. 37–42 (2007)
Yohimori, S., Mitsukura, Y., Fukumi, M., Akamatsu, N., Pedrycz, N.: License plate detection system by using threshold function and improved template matching method. In: Proceedings of IEEE Annual Meeting Fuzzy Information Processing (NAFIPS), vol. 1, pp. 357–362 (2004)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Jia, W., Zhang, H., He, X., Piccardi, M.: Mean shift for accurate license plate localization. In: Proceedings of IEEE Intelligent Transport System, pp. 566–571 (2005)
Yao, Z., Yi, W.: License plate detection based on multistage information fusion. Inf. Fusion 18, 78–85 (2014)
Xu, H.-K., Yu, F.-H., Jiao, J.-H., Song, H.-S.: A new approach of the vehicle license plate location. In: Proceedings of 6th International Conference on Parallel Distributed Computing Application Technology (PDCAT), pp. 1055–1057 (2005)
Deb, K., Chae, H.-U., Jo, K.-H.: Vehicle license plate detection method based on sliding concentric windows and histogram. J. Comput. 4(8), 1–7 (2009)
Anagnostopoulos, C.N.E., Anagnostopoulos, I.E., Loumos, V., Kayafas, E.: A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans. Intell. Transp. Syst. 7(3), 377–392 (2006)
Xie, L., Ahmad, T., Jin, L., Liu, Y., Zhang, S.: A new CNN-based method for multi-directional car license plate detection. IEEE Trans. Intell. Transp. Syst. 19(2), 507–517 (2018)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Sung, J.-Y., Yu, S.-B., S.-h. P. Korea.: Real-time automatic license plate recognition system using YOLOv4. 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia) Seoul, Korea (South), pp. 1–3 (2020). https://doi.org/10.1109/ICCE-Asia49877.2020.9277050
Ke, X., Zeng, G., Guo, W.: An ultra-fast automatic license plate recognition approach for unconstrained scenarios. IEEE Trans. Intell. Transp. Syst. 24(5), 5172–5185 (2023). https://doi.org/10.1109/TITS.2023.3237581
Rahman, C.A., Badawy, W., Radmanesh, A.: A real time vehicle’s license plate recognition system. In: Proceedings of IEEE Conference Advance Video Signal Based Surveilleance, pp. 163–166 (2003)
Hu, P., Zhao, Y., Yang, Z., Wang, J.: Recognition of gray character using Gabor filters. In: Proceedings of 5th International Conference on Information Fusion (FUSION), vol. 1, pp. 419–424 (2002)
Kim, K.K., Kim, K.I., Kim, J.B., Kim, H.J.: Learning-based approach for license plate recognition. In: Proceedings of Neural Network Signal Processing X, IEEE Signal Processing Soc. Workshop, vol. 2, pp. 614–623 (2000)
Llorens, D., Marzal, A., Palazón, V., Vilar, J.M.: Car license plates extraction and recognition based on connected components analysis and HMM decoding. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 571–578. Springer, Heidelberg (2005). https://doi.org/10.1007/11492429_69
Li, H., Chunhua, S.: Reading car license plates using deep convolutional neural networks and LSTMs. arXiv preprint arXiv:1601.05610 (2016)
Wang, Y., Bian, Z.-P., Zhou, Y., Chau, L.-P.: Rethinking and designing a high-performing automatic license plate recognition approach. IEEE Trans. Intell. Transp. Syst. 23(7), 8868–8880 (2022)
Zherzdev, S., Gruzdev, A.: LPRNet: license plate recognition via deep neural networks (2018). arXiv:1806.10447
Ammar, A., Koubaa, A., Boulila, W., Benjdira, B., Alhabashi, Y.: A multi-stage deep-learning-based vehicle and license plate recognition system with real-time edge inference. Sensors 23(4), 2120 (2023)
Abdellatif, M.M., Elshabasy, N.H., Elashmawy, A.E., AbdelRaheem, M.: A low cost IoT-based Arabic license plate recognition model for smart parking systems. Ain Shams Eng. J. 14(6), 102178 (2023)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of Advance Neural Information Processing System, pp. 91–99 (2015)
Li, H., Wang, P., Shen, C.: Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Trans. Intell. Transp. Syst. 20(3), 1126–1136 (2019)
Yuan, Y.L., Zou, W.B., Zhao, Y., Wang, X., Hu, X.F., Komodakis, N.: A robust and efficient approach to license plate detection. IEEE Trans. Image Process. 26(3), 1102–1114 (2016)
Liu, W. et al.: SSD: single shot MultiBox detector. In: Proceedings of European Conference on Computer Vision, pp. 21–37 (2016)
Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., Zhang, Y.: A robust attentional framework for license plate recognition in the wild. IEEE Trans. Intell. Transp. Syst. (2020)
Wang, T., et al.: Decoupled attention network for text recognition. Proc. AAAI Conf. Artif. Intell. 34(7), 12216–12224 (2020)
Luo, C., Jin, L., Sun, Z.: A multi-object rectified attention network for scene text recognition (2019). arXiv:1901.03003
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mohan, K., Pandey, S.K. (2025). A Deep-Learning Based Real-Time License Plate Recognition System for Resource-Constrained Scenarios. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15320. Springer, Cham. https://doi.org/10.1007/978-3-031-78498-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-78498-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78497-2
Online ISBN: 978-3-031-78498-9
eBook Packages: Computer ScienceComputer Science (R0)