Skip to main content

Impacts of Personalization on Social Network Exposure

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Abstract

Algorithms personalize social media feeds by ranking posts from the inventory of a user’s network. However, the combination of network structure and user activity can distort the perceived popularity of user traits in the network well before any personalization step. To measure this “exposure bias” and how users might perceive their network when subjected to personalization, we conducted an analysis using archival X (formerly Twitter) data with a fixed inventory. We compare different ways recommender systems rank-order feeds: by recency, by popularity, based one the expected probability of engagement, and random sorting. Our results suggest that users who are subject to simpler algorithmic feeds experience significantly higher exposure bias compared to those with chronologically-sorted, popularity-sorted and deep-learning recommender models. Furthermore, we identify two key factors for bias mitigation: the effective degree-attribute correlation and session length. These factors can be adjusted to control the level of exposure bias experienced by users. To conclude we describe how this framework can extend to other platforms. Our findings highlight how the interactions between social networks and algorithmic curation shape—and distort—user’s online experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In an effort for reproducibility we provide a public repository with the simulation and analysis scripts: https://github.com/bartleyn/laughing-train.

References

  1. Alipourfard, N., Nettasinghe, B., Abeliuk, A., Krishnamurthy, V., Lerman, K.: Friendship paradox biases perceptions in directed networks. Nat. Commun. 11(1), 707 (2020)

    Article  MATH  Google Scholar 

  2. Bakshy, E., Messing, S., Adamic, L.A.: Exposure to ideologically diverse news and opinion on facebook. Science 348(6239), 1130–1132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandy, J., Diakopoulos, N.: More accounts, fewer links: how algorithmic curation impacts media exposure in twitter timelines. Proc. ACM Hum.-Comput. Interact. 5(CSCW1), 1–28 (2021)

    Article  Google Scholar 

  4. Bartley, N., Abeliuk, A., Ferrara, E., Lerman, K.: Auditing algorithmic bias on twitter. In: 13th ACM Web Science Conference 2021, pp. 65–73 (2021)

    Google Scholar 

  5. Bartley, N., Burghardt, K., Lerman, K.: Evaluating content exposure bias in social networks. In: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, pp. 379–383 (2023)

    Google Scholar 

  6. Beattie, L., Taber, D., Cramer, H.: Challenges in translating research to practice for evaluating fairness and bias in recommendation systems. In: Proceedings of the 16th ACM Conference on Recommender Systems, pp. 528–530 (2022)

    Google Scholar 

  7. Chen, W., Pacheco, D., Yang, K.C., Menczer, F.: Neutral bots reveal political bias on social media. arXiv preprint arXiv:2005.08141 (2020)

  8. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

    Google Scholar 

  9. Donkers, T., Ziegler, J.: The dual echo chamber: Modeling social media polarization for interventional recommending. In: Proceedings of the 15th ACM Conference on Recommender Systems, pp. 12–22 (2021)

    Google Scholar 

  10. Eslami, M., Aleyasen, A., Karahalios, K., Hamilton, K., Sandvig, C.: Feedvis: a path for exploring news feed curation algorithms. In: Proceedings of the 18th ACM Conference Companion on Computer Supported Cooperative Work & Social Computing, pp. 65–68 (2015)

    Google Scholar 

  11. Eslami, M., et al.: First i “like" it, then i hide it: folk theories of social feeds. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 2371–2382 (2016)

    Google Scholar 

  12. Ranking and Content. https://transparency.fb.com/features/ranking-and-content/. Accessed 01 Jan 2024

  13. Galesic, M., Olsson, H., Rieskamp, J.: Social sampling explains apparent biases in judgments of social environments. Psychol. Sci. 23(12), 1515–1523 (2012)

    Article  Google Scholar 

  14. González-Bailón, S., et al.: Asymmetric ideological segregation in exposure to political news on Facebook. Science 381(6656), 392–398 (2023)

    Google Scholar 

  15. González-Bailón, S., Lelkes, Y.: Do social media undermine social cohesion? a critical review. Soc. Issues Policy Rev. 17(1), 155–180 (2023)

    Article  MATH  Google Scholar 

  16. Guess, A.M., et al.: How do social media feed algorithms affect attitudes and behavior in an election campaign? Science 381(6656), 398–404 (2023)

    Google Scholar 

  17. Guo, D., et al.:: Deep Bayesian bandits: exploring in online personalized recommendations. In: Fourteenth ACM Conference on Recommender Systems, pp. 456–461 (2020)

    Google Scholar 

  18. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  19. Huszár, F., Ktena, S.I., O’Brien, C., Belli, L., Schlaikjer, A., Hardt, M.: Algorithmic amplification of politics on twitter. Proc. Natl. Acad. Sci. 119(1), e2025334119 (2022)

    Article  Google Scholar 

  20. Juneja, P., Mitra, T.: Auditing e-commerce platforms for algorithmically curated vaccine misinformation. In: Proceedings of the 2021 Chi Conference on Human Factors in Computing Systems, pp. 1–27 (2021)

    Google Scholar 

  21. Kardosh, R., Sklar, A.Y., Goldstein, A., Pertzov, Y., Hassin, R.R.: Minority salience and the overestimation of individuals from minority groups in perception and memory. Proc. Natl. Acad. Sci. 119(12), e2116884119 (2022)

    Article  Google Scholar 

  22. Kooti, F., Hodas, N., Lerman, K.: Network weirdness: exploring the origins of network paradoxes. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 8, pp. 266–274 (2014)

    Google Scholar 

  23. Lazovich, T., et al.: Measuring disparate outcomes of content recommendation algorithms with distributional inequality metrics. Patterns 3(8), 100568 (2022)

    Google Scholar 

  24. Lerman, K., Yan, X., Wu, X.Z.: The “majority illusion" in social networks. PLoS ONE 11(2), e0147617 (2016)

    Google Scholar 

  25. Nikolov, D., Flammini, A., Menczer, F.: Right and left, partisanship predicts (asymmetric) vulnerability to misinformation. Harvard Kennedy School (HKS) Misinformation Review (2021)

    Google Scholar 

  26. Panagiotopoulos, P., Barnett, J., Bigdeli, A.Z., Sams, S.: Social media in emergency management: Twitter as a tool for communicating risks to the public. Technol. Forecast. Soc. Chang. 111, 86–96 (2016)

    Article  MATH  Google Scholar 

  27. Ramaciotti Morales, P., Cointet, J.P.: Auditing the effect of social network recommendations on polarization in geometrical ideological spaces. In: Proceedings of the 15th ACM Conference on Recommender Systems, pp. 627–632 (2021)

    Google Scholar 

  28. Ribeiro, M.H., Ottoni, R., West, R., Almeida, V.A., Meira Jr, W.: Auditing radicalization pathways on Youtube. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 131–141 (2020)

    Google Scholar 

  29. Ribeiro, M.H., Veselovsky, V., West, R.: The amplification paradox in recommender systems. arXiv preprint arXiv:2302.11225 (2023)

  30. Rodriguez, M.G., Gummadi, K., Schoelkopf, B.: Quantifying information overload in social media and its impact on social contagions. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 8, pp. 170–179 (2014)

    Google Scholar 

  31. Sandvig, C., Hamilton, K., Karahalios, K., Langbort, C.: Auditing algorithms: research methods for detecting discrimination on internet platforms. Data Discriminat.: Convert. Critic. Concerns Product. Inquiry 22(2014), 4349–4357 (2014)

    MATH  Google Scholar 

  32. Sapiezynski, P., Zeng, W., E Robertson, R., Mislove, A., Wilson, C.: Quantifying the impact of user attention on fair group representation in ranked lists. In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 553–562 (2019)

    Google Scholar 

  33. How Tiktok Recomends Videos for You. https://newsroom.tiktok.com/en-us/how-tiktok-recommends-videos-for-you. Accessed 01 Jan 2024

  34. Tomlein, M., et al.: An audit of misinformation filter bubbles on Youtube: bubble bursting and recent behavior changes. In: Proceedings of the 15th ACM Conference on Recommender Systems, pp. 1–11 (2021)

    Google Scholar 

  35. https://github.com/twitter/the-algorithm/. Accessed 01 Jan 2024

  36. On Youtube’s Recommendation System. https://blog.youtube/inside-youtube/on-youtubes-recommendation-system/. Accessed 01 Jan 2024

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Bartley .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Statement

All data were anonymized prior to analysis. The analysis has minimal risk to user privacy, and analysis is unlikely to involve any ethical risk.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartley, N., Burghardt, K., Lerman, K. (2025). Impacts of Personalization on Social Network Exposure. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15212. Springer, Cham. https://doi.org/10.1007/978-3-031-78538-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78538-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78537-5

  • Online ISBN: 978-3-031-78538-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics