Skip to main content

DeepFairRank: A Multi-objective Framework for Fair Top-k Node Ranking in Network Data

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15211))

  • 6 Accesses

Abstract

The fair top-k node ranking problem aims to find the k most significant nodes in a network without discriminating against particular groups of nodes as defined by their protected attribute. However, unlike fair ranking problems for independent and identically distributed (i.i.d.) data, the rank assigned to a node may influence the perception of fairness among its neighbors with similar acceptability scores due to the interconnectivity among the nodes. Fairness perception, which is an individual-level fairness metric, has thus been proposed to measure the degree to which a node perceives its ranking outcome as fair. While existing fair node ranking algorithms can help maximize its fairness perception, they are susceptible to the oversmoothing effect due to their message passing mechanism. Thus, a key challenge in designing fair node ranking algorithms is to balance the trade-off between maximizing the acceptability of the highly ranked nodes while satisfying both individual-level and group-level fairness criteria. To address this challenge, this paper presents a novel framework called DeepFairRank that integrates the potentially diverging criteria in a unified, multi-objective optimization framework using neural networks. Experimental results demonstrate the effectiveness of the framework when applied to real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/fair-search/fairsearch-fair-python.

  2. 2.

    https://github.com/jiank2/inform.

References

  1. Adams, J.S.: Inequity in social exchange. In: Advances in Experimental Social Psychology, vol. 2, pp. 267–299. Academic Press (1965)

    Google Scholar 

  2. Asudeh, A., Jagadish, H., Stoyanovich, J., Das, G.: Designing fair ranking schemes. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1259–1276 (2019)

    Google Scholar 

  3. Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: a survey. Soc. Netw. Anal. Min. 8(1), 1–11 (2018). https://doi.org/10.1007/s13278-018-0493-2

    Article  MATH  Google Scholar 

  4. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)

    Google Scholar 

  5. Hardt, M., Price, E., Srebro, N., et al.: Equality of opportunity in supervised learning. In: NeurIPS, pp. 3315–3323 (2016)

    Google Scholar 

  6. Kang, J., He, J., Maciejewski, R., Tong, H.: Inform: individual fairness on graph mining. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 379–389 (2020)

    Google Scholar 

  7. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  9. Krasanakis, E., Papadopoulos, S., Kompatsiaris, I.: Applying fairness constraints on graph node ranks under personalization bias. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) COMPLEX NETWORKS 2020 2020. SCI, vol. 944, pp. 610–622. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-65351-4_49

    Chapter  Google Scholar 

  10. Leskovec, J., Mcauley, J.J.: Learning to discover social circles in ego networks. In: NeurIPS, pp. 539–547 (2012)

    Google Scholar 

  11. Li, Y., Fan, J., Wang, Y., Tan, K.L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)

    Article  MATH  Google Scholar 

  12. Masrour, F., Tan, P.N., Esfahanian, A.: Fairness perception from a network-centric perspective. In: 2020 IEEE International Conference on Data Mining (ICDM) (2020)

    Google Scholar 

  13. Masrour, F., Wilson, T., Yan, H., Tan, P.N., Esfahanian, A.: Bursting the filter bubble: Fairness-aware network link prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 841–848 (2020)

    Google Scholar 

  14. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: Survey on bias and fairness in machine learning. ACM Comp. Surv. 54(6), 115:1–115:35 (2022)

    Google Scholar 

  15. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the Web. Tech. rep, Stanford InfoLab (1999)

    Google Scholar 

  16. Patro, G.K., Porcaro, L., Mitchell, L., Zhang, Q., Zehlike, M., Garg, N.: Fair ranking: a critical review, challenges, and future directions, pp. 1929–1942 (2022)

    Google Scholar 

  17. ProPublica: Compas recidivism risk score data and analysis (2016), data retrieved from ProPublica Data Store (2016). https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis

  18. Singh, A., Joachims, T.: Fairness of exposure in rankings. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2219–2228 (2018)

    Google Scholar 

  19. Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., Tsaparas, P.: Link recommendations for PageRank Fairness. In: Proceedings of the ACM Web Conference 2022, pp. 3541–3551 (2022)

    Google Scholar 

  20. Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., Mamoulis, N.: Fairness-aware PageRank. In: Proceedings of the Web Conference 2021, pp. 3815–3826 (2021)

    Google Scholar 

  21. Yeh, I.C., Lien, C.: The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Sys. with Appl. 36(2), 2473–2480 (2009)

    Article  MATH  Google Scholar 

  22. Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-Yates, R.: Fa* ir: A fair top-k ranking algorithm. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1569–1578 (2017)

    Google Scholar 

  23. Zehlike, M., SĂĽhr, T., Baeza-Yates, R., Bonchi, F., Castillo, C., Hajian, S.: Fair top-k ranking with multiple protected groups. Inf. Process. Manag. 59, 102707 (2022)

    Article  Google Scholar 

  24. Zehlike, M., Yang, K., Stoyanovich, J.: Fairness in ranking, part I: score-based ranking. ACM Comp. Surv. 55(6), 1–36 (2022)

    MATH  Google Scholar 

Download references

Acknowledgment

This material is based upon work supported by NSF under grant #IIS-1939368 and #IIS-2006633. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, F., Masrour, F., Tan, PN., Esfahanian, AH. (2025). DeepFairRank: A Multi-objective Framework for Fair Top-k Node Ranking in Network Data. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15211. Springer, Cham. https://doi.org/10.1007/978-3-031-78541-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78541-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78540-5

  • Online ISBN: 978-3-031-78541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics