Skip to main content

Exploring Behavioral Tendencies on Social Media: A Perspective Through Claim Check-Worthiness

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15211))

  • 24 Accesses

Abstract

This study examines how factual claims of different significance influence and reflect social media users’ behavioral patterns. Leveraging “check-worthiness” as a measure of the factual significance of claims, we analyze the connection between factual claims and user behaviors on Twitter. Through a series of experiments using statistical methods such as correlation analysis and hypothesis testing, we provide insights into a few pivotal inquiries: (1) whether differences exist between users’ tweeting tendencies toward check-worthiness, (2) the underlying reasons for such differences, (3) whether users tend to create, share, and endorse content with check-worthiness levels similar to their own tweets, and (4) whether users with similar tendencies toward check-worthiness exhibit heightened engagement. The experiments were conducted across three datasets, comprising over 48.5 million tweets and involving 15,000 users, spanning several domains and yielding statistically significant findings. Previous studies have primarily centered on examining the effectiveness and strategies of fact-checks rather than understanding people’s behavioral tendencies toward factual claims. Our research pioneers understanding in this area, offering valuable insights for behavioral modeling and social sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://zenodo.org/records/11081026.

  2. 2.

    https://idir.uta.edu/claimbuster/api.

  3. 3.

    http://reporterslab.org/tech-and-check.

  4. 4.

    https://checkthat.gitlab.io/clef2024/task1.

References

  1. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57(1), 289–300 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bovet, A., Makse, H.A.: Influence of fake news in twitter during the 2016 us presidential election. Nat. Commun. 10(1), 7 (2019)

    Article  MATH  Google Scholar 

  3. Brummette, J., DiStaso, M., Vafeiadis, M., Messner, M.: Read all about it: the politicization of “fake news” on twitter. Journ. Mass Commun. Q. 95(2), 497–517 (2018)

    Google Scholar 

  4. Brunner, E., Munzel, U.: The nonparametric behrens-fisher problem: asymptotic theory and a small-sample approximation. Biometrical J. J. Math. Methods Biosci. 42(1), 17–25 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Chen, J., Liu, Y., Zou, M.: User emotion for modeling retweeting behaviors. Neural Netw. 96, 11–21 (2017)

    Article  MATH  Google Scholar 

  6. Clayton, K., et al.: Real solutions for fake news? Measuring the effectiveness of general warnings and fact-check tags in reducing belief in false stories on social media. Polit. Behav. 42, 1073–1095 (2020)

    Article  MATH  Google Scholar 

  7. Cohen, I., et al.: Pearson correlation coefficient. In: Noise Reduction in Speech Processing, pp. 1–4 (2009)

    Google Scholar 

  8. Comarela, G., Crovella, M., Almeida, V., Benevenuto, F.: Understanding factors that affect response rates in twitter. In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media, pp. 123–132 (2012)

    Google Scholar 

  9. Firdaus, S.N., Ding, C., Sadeghian, A.: Topic specific emotion detection for retweet prediction. Int. J. Mach. Learn. Cybern. 10, 2071–2083 (2019)

    Article  MATH  Google Scholar 

  10. Funke, D.: This Washington post fact check was chosen by a bot (2018)

    Google Scholar 

  11. Hansen, C., Hansen, C., Alstrup, S., Grue Simonsen, J., Lioma, C.: Neural check-worthiness ranking with weak supervision: Finding sentences for fact-checking. In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 994–1000 (2019)

    Google Scholar 

  12. Hassan, N., Li, C., Tremayne, M.: Detecting check-worthy factual claims in presidential debates. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1835–1838 (2015)

    Google Scholar 

  13. Hassan, N., Tremayne, M., Arslan, F., Li, C.: Comparing automated factual claim detection against judgments of journalism organizations. In: Computation+ Journalism Symposium, pp. 1–5 (2016)

    Google Scholar 

  14. Hassan, N., et al.: Claimbuster: the first-ever end-to-end fact-checking system. Proc. VLDB Endow. 10(12), 1945–1948 (2017)

    Article  MATH  Google Scholar 

  15. Hopcroft, J., Lou, T., Tang, J.: Who will follow you back? Reciprocal relationship prediction. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1137–1146 (2011)

    Google Scholar 

  16. Hu, X., Tang, L., Tang, J., Liu, H.: Exploiting social relations for sentiment analysis in microblogging. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining, pp. 537–546 (2013)

    Google Scholar 

  17. Kim, H.S., et al.: Fact-checking and audience engagement: a study of content analysis and audience behavioral data of fact-checking coverage from news media. Digit. Journ. 10(5), 781–800 (2022)

    Google Scholar 

  18. Lespagnol, C., Mothe, J., Ullah, M.Z.: Information nutritional label and word embedding to estimate information check-worthiness. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 941–944 (2019)

    Google Scholar 

  19. Majithia, S., et al.: Claimportal: integrated monitoring, searching, checking, and analytics of factual claims on twitter. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 153–158 (2019)

    Google Scholar 

  20. Massey, F.J., Jr.: The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)

    Article  MATH  Google Scholar 

  21. Park, S., Park, J.Y., Chin, H., Kang, J.h., Cha, M.: An experimental study to understand user experience and perception bias occurred by fact-checking messages. In: Proceedings of the Web Conference 2021, pp. 2769–2780 (2021)

    Google Scholar 

  22. Rony, M.M.U., Hoque, E., Hassan, N.: Claimviz: visual analytics for identifying and verifying factual claims. In: 2020 IEEE Visualization Conference (VIS), pp. 246–250. IEEE (2020)

    Google Scholar 

  23. Samadi, M., Talukdar, P., Veloso, M., Blum, M.: Claimeval: integrated and flexible framework for claim evaluation using credibility of sources. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  24. Shamma, D.A., Kennedy, L., Churchill, E.F.: Tweet the debates: understanding community annotation of uncollected sources. In: Proceedings of the First SIGMM Workshop on Social Media, pp. 3–10 (2009)

    Google Scholar 

  25. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shu, K., Cui, L., Wang, S., Lee, D., Liu, H.: defend: explainable fake news detection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 395–405 (2019)

    Google Scholar 

  27. Vasileva, S., Atanasova, P., Màrquez, L., Barrón-Cedeño, A., Nakov, P.: It takes nine to smell a rat: neural multi-task learning for check-worthiness prediction. arXiv preprint arXiv:1908.07912 (2019)

  28. Wright, D., Augenstein, I.: Claim check-worthiness detection as positive unlabelled learning. arXiv preprint arXiv:2003.02736 (2020)

Download references

Acknowledgement

This work is partially supported by the National Science Foundation award #2346261. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyu Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Zhu, Z., Zhang, H., Li, C. (2025). Exploring Behavioral Tendencies on Social Media: A Perspective Through Claim Check-Worthiness. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15211. Springer, Cham. https://doi.org/10.1007/978-3-031-78541-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78541-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78540-5

  • Online ISBN: 978-3-031-78541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics