Skip to main content

You Must Be a Trump Supporter: Political Identity Projections on the Social Web

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Abstract

This paper assesses the extent of political polarization in the United States by demonstrating the phenomenon of political identity projection, where individuals attribute political affiliations to others based on political discourse. This aspect of political behavior, often found in interactions between authors on various social media platforms, remains relatively unexplored. To address this gap, our research utilizes a comprehensive dataset of comments on YouTube news videos from three prominent US cable news networks (Fox News, CNN, and MSNBC) to interpret expressions of political polarization. First, we assess the accuracy of LLMs in identifying political identity projections, exploring the potential biases these models may incorporate. Second, we conduct a user engagement analysis that highlights interaction patterns and their implications for understanding political identity projections across different news outlets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Publicly available at Github link: .

References

  1. Achiam, J., et al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  2. Autor, D., et al.: The polarization of job opportunities in the us labor market: implications for employment and earnings. Center Am. Progress Hamilton Project 6, 11–19 (2010)

    MATH  Google Scholar 

  3. Bail, C.A., et al.: Exposure to opposing views on social media can increase political polarization. Proc. Natl. Acad. Sci. 115(37), 9216–9221 (2018)

    Article  MATH  Google Scholar 

  4. Barber, M., McCarty, N., Mansbridge, J., Martin, C.J.: Causes and consequences of polarization. Pol. Negotiat. Handbook 37, 39–43 (2015)

    MATH  Google Scholar 

  5. Barcelos, R.H.: To engage or not engage? the features of video content on YouTube affecting digital consumer engagement. J. Consum. Behav. 20(1), 15–26 (2021)

    MATH  Google Scholar 

  6. Binder, S.A.: Stalemate: Causes and Consequences of Legislative Gridlock. Rowman & Littlefield (2004)

    Google Scholar 

  7. Bordalo, P., Tabellini, M., Yang, D.Y.: Stereotypes and politics (2020)

    Google Scholar 

  8. Castle, J.J., Stepp, K.K.: Partisanship, religion, and issue polarization in the united states: a reassessment. Pol. Beh. 1–25 (2021)

    Google Scholar 

  9. Chen, K., et al.: Partisan us news media representations of Syrian refugees. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 17, pp. 103–113 (2023)

    Google Scholar 

  10. Demszky, D., et al.: Analyzing polarization in social media: method and application to tweets on 21 mass shootings (2019)

    Google Scholar 

  11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  12. Ditonto, T.: Direct and indirect effects of prejudice: Sexism, information, and voting behavior in political campaigns. Pol. Groups Identities 7(3), 590–609 (2019)

    Article  Google Scholar 

  13. Dutta, S., Li, B., Nagin, D.S., KhudaBukhsh, A.R.: A murder and protests, the capitol riot, and the Chauvin trial: estimating disparate news media stance. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022, pp. 5059–5065. ijcai.org (2022). https://doi.org/10.24963/IJCAI.2022/702

  14. Eagly, A.H., Nater, C., Miller, D.I., Kaufmann, M., Sczesny, S.: Gender stereotypes have changed: a cross-temporal meta-analysis of us public opinion polls from 1946 to 2018. Am. Psychol. 75(3), 301 (2020)

    Article  Google Scholar 

  15. Emelu, M.N.: The us cable televisions’ framing of mass shooting: a grounded discovery of competing narratives. Front. Commun. 8, e1174946–e1174946 (2023)

    Article  Google Scholar 

  16. Ensor, K.: The Partisan Delivery of News: A Content Analysis of CNN and Fox, vol. 16, no. 11. Johnson & Wales University, ScholarsArchive@ JWU (2018)

    Google Scholar 

  17. Garimella, V.R.K., Weber, I.: A long-term analysis of polarization on twitter. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 11, pp. 528–531 (2017)

    Google Scholar 

  18. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nature Mach. Intell. 2(11), 665–673 (2020)

    Article  MATH  Google Scholar 

  19. Grossmann, M., Hopkins, D.A.: Ideological republicans and group interest democrats: the asymmetry of Am. party politics. Perspect. Polit. 13(1), 119–139 (2015)

    Article  MATH  Google Scholar 

  20. Halpern, D., Gibbs, J.: Social media as a catalyst for online deliberation? exploring the affordances of Facebook and YouTube for political expression. Comput. Hum. Behav. 29(3), 1159–1168 (2013)

    Article  Google Scholar 

  21. Halterman, A., Keith, K.A., Sarwar, S.M., O’Connor, B.: Corpus-level evaluation for event QA: the indiapoliceevents corpus covering the 2002 gujarat violence. In: Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021. Findings of ACL, vol. ACL/IJCNLP 2021, pp. 4240–4253. Association for Computational Linguistics (2021)

    Google Scholar 

  22. Hare, C., Poole, K.T.: The polarization of contemporary American politics. Polity 46(3), 411–429 (2014)

    Article  MATH  Google Scholar 

  23. Hefeker, C., Neugart, M.: Policy rules and political polarization (2024)

    Google Scholar 

  24. Heiss, R., Schmuck, D., Matthes, J.: What drives interaction in political actors’ Facebook posts? profile and content predictors of user engagement and political actors’ reactions. Inf. Commun. Soc. 22(10), 1497–1513 (2019)

    Article  Google Scholar 

  25. Hetherington, M.: Review article: putting polarization in perspective. Br. J. Pol. Sci. 39, 413 – 448 (2009). https://doi.org/10.1017/S0007123408000501

  26. Hong, J., et al.: Analysis of faces in a decade of us cable tv news. In: KDD’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (2021)

    Google Scholar 

  27. Hyun, K.D., Moon, S.J.: Agenda setting in the partisan TV news context: attribute agenda setting and polarized evaluation of presidential candidates among viewers of NBC, CNN, and fox news. J. Mass Commun. Quart. 93(3), 509–529 (2016)

    MATH  Google Scholar 

  28. Iandoli, L., Primario, S., Zollo, G.: The impact of group polarization on the quality of online debate in social media: a systematic literature review. Technol. Forecast. Soc. Chang. 170, 120924 (2021)

    Article  MATH  Google Scholar 

  29. Iyengar, S., Sood, G., Lelkes, Y.: Affect, not ideology: a social identity perspective on polarization. Public Opin. Q. 76(3), 405–431 (2012)

    Article  Google Scholar 

  30. Jiang, A.Q., et al.: Mistral 7b. arXiv preprint arXiv:2310.06825 (2023)

  31. Jost, J.T., Baldassarri, D.S., Druckman, J.N.: Cognitive-motivational mechanisms of political polarization in social-communicative contexts. Nat. Rev. Psychol. 1(10), 560–576 (2022)

    Article  MATH  Google Scholar 

  32. Juneja, P., Bhuiyan, M.M., Mitra, T.: Assessing enactment of content regulation policies: a post hoc crowd-sourced audit of election misinformation on YouTube. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–22 (2023)

    Google Scholar 

  33. KhudaBukhsh, A.R., Bennett, P.N., White, R.W.: Building effective query classifiers: a case study in self-harm intent detection. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, October 19 - 23, 2015, pp. 1735–1738. ACM (2015)

    Google Scholar 

  34. KhudaBukhsh, A.R., Sarkar, R., Kamlet, M.S., Mitchell, T.: We don’t speak the same language: interpreting polarization through machine translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 14893–14901 (2021)

    Google Scholar 

  35. KhudaBukhsh, A.R., Sarkar, R., Kamlet, M.S., Mitchell, T.M.: Fringe news networks: dynamics of us news viewership following the 2020 presidential election. In: 14th ACM Web Science Conference 2022, pp. 269–278 (2022)

    Google Scholar 

  36. Kouzy, R., et al.: Coronavirus goes viral: quantifying the covid-19 misinformation epidemic on twitter. Cureus 12(3) (2020)

    Google Scholar 

  37. Kubin, E., Von Sikorski, C.: The role of (social) media in political polarization: a systematic review. Ann. Int. Commun. Assoc. 45(2), 188–206 (2021)

    MATH  Google Scholar 

  38. Kubin, E., Von Sikorski, C.: The role of (social) media in political polarization: a systematic review. Ann. Int. Commun. Assoc. 45(3), 188–206 (2021)

    MATH  Google Scholar 

  39. Lee, C., Shin, J., Hong, A.: Does social media use really make people politically polarized? direct and indirect effects of social media use on political polarization in south korea. Telematics Inform. 35(1), 245–254 (2018)

    Article  MATH  Google Scholar 

  40. Lee, F.E.: How party polarization affects governance. Annu. Rev. Polit. Sci. 18, 261–282 (2015)

    Article  Google Scholar 

  41. Marozzo, F., Bessi, A.: Analyzing polarization of social media users and news sites during political campaigns. Soc. Netw. Anal. Min. 8, 1–13 (2018)

    Article  MATH  Google Scholar 

  42. McCarty, N., Poole, K.T., Rosenthal, H.: Polarized America: The Dance of Ideology and Unequal Riches. MIT Press (2016)

    Google Scholar 

  43. McCoy, J., Rahman, T., Somer, M.: Polarization and the global crisis of democracy: common patterns, dynamics, and pernicious consequences for democratic polities. Am. Behav. Sci. 62(1), 16–42 (2018)

    Article  Google Scholar 

  44. Minh Pham, T., Kondor, I., Hanel, R., Thurner, S.: The effect of social balance on social fragmentation. J. R. Soc. Interface 17(172), 20200752 (2020)

    Article  MATH  Google Scholar 

  45. Munaro, A.C., Hübner Barcelos, R.: YouTube as a source of patient information for coronavirus disease (COVID-19): a content-quality and audience engagement analysis. Rev. Med. Virol. 30(3), 2105 (2021)

    MATH  Google Scholar 

  46. Munaro, A.C., Hübner Barcelos, R., Francisco Maffezzolli, E.C., Santos Rodrigues, J.P., Cabrera Paraiso, E.: To engage or not engage? the features of video content on YouTube affecting digital consumer engagement. J. Consum. Behav. 20(5), 1336–1352 (2021)

    Article  Google Scholar 

  47. NPR: Google races to find a solution after AI generator Gemini misses the mark (2024). https://www.npr.org/2024/03/18/1239107313/google-races-to-find-a-solution-after-ai-generator-gemini-misses-the-mark

  48. Papakyriakopoulos, O., Zuckerman, E.: The media during the rise of trump: Identity politics, immigration, “Mexican” demonization and hate-crime. In: Proceedings of the International AAAI Conference on Web and Social Media, vol. 15, pp. 467–478 (2021)

    Google Scholar 

  49. Park, C.S.: Does twitter motivate involvement in politics? Tweeting, opinion leadership, and political engagement. Comput. Hum. Behav. 29(4), 1641–1648 (2013)

    Article  MATH  Google Scholar 

  50. Poole, K.T., Rosenthal, H.: The polarization of American politics. J. Pol. 46(4), 1061–1079 (1984)

    Article  MATH  Google Scholar 

  51. Ross Arguedas, A., Robertson, C., Fletcher, R., Nielsen, R.: Echo chambers, filter bubbles, and polarisation: a literature review (2022)

    Google Scholar 

  52. Sap, M., Swayamdipta, S., Vianna, L., Zhou, X., Choi, Y., Smith, N.A.: Annotators with attitudes: how annotator beliefs and identities bias toxic language detection. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, pp. 5884–5906. Association for Computational Linguistics (2022)

    Google Scholar 

  53. Schroeder, E., Stone, D.F.: Fox news and political knowledge. J. Public Econ. 126, 52–63 (2015)

    Article  MATH  Google Scholar 

  54. Somer, M., McCoy, J.L., Luke, R.E.: Pernicious polarization, autocratization and opposition strategies. Democratization 28(5), 929–948 (2021)

    Article  Google Scholar 

  55. Stanley, A.: How msnbc became fox’s liberal evil twin. The New York Times (2012). https://www.nytimes.com/2012/08/31/us/politics/msnbc-as-foxs-liberal-evil-twin.html. Accessed 01 Sept 2020

  56. Szmuda, T., Syed, M.T., Singh, A., Ali, S.: YouTube as a source of patient information for coronavirus disease (COVID-19): a content-quality and audience engagement analysis. Rev. Med. Virol. 30(3), 1–9 (2020)

    MATH  Google Scholar 

  57. Team, G., et al.: Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805 (2023)

  58. Tesler, M.: The spillover of racialization into health care: how president Obama polarized public opinion by racial attitudes and race. Am. J. Pol. Sci. 56(3), 690–704 (2012)

    Article  MATH  Google Scholar 

  59. Tucker, J.A., et al.: Social media, political polarization, and political disinformation: a review of the scientific literature. In: Political Polarization, and Political Disinformation: A Review of the Scientific Literature, 19 March 2018 (2018)

    Google Scholar 

  60. Weber, T., et al.: Political polarization: challenges, opportunities, and hope for consumer welfare, marketers, and public policy. J. Public Policy Mark. 40(2), 184–205 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  61. Weerasooriya, T.C., Dutta, S., Ranasinghe, T., Zamperi, M., Homan, C.M., KhudaBukhsh, A.R.: Vicarious offense and noise audit of offensive speech classifiers: unifying human and machine disagreement on what is offensive. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 11648–11668 (2023)

    Google Scholar 

  62. Yoo, C.H., KhudaBukhsh, A.R.: Auditing and robustifying COVID-19 misinformation datasets via anticontent sampling. In: Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, pp. 15260–15268. AAAI Press (2023)

    Google Scholar 

  63. Gil de Zúñiga, H., Correa, T., Valenzuela, S.: Selective exposure to cable news and immigration in the us: the relationship between fox news, CNN, and attitudes toward Mexican immigrants. J. Broadcast. Electron. Media 56(4), 597–615 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashiqur R. KhudaBukhsh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mittal, S., Chawla, T., KhudaBukhsh, A.R. (2025). You Must Be a Trump Supporter: Political Identity Projections on the Social Web. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15211. Springer, Cham. https://doi.org/10.1007/978-3-031-78541-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78541-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78540-5

  • Online ISBN: 978-3-031-78541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics