Skip to main content

Node Generation for Node Classification in Sparsely-Labeled Graphs

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15211))

  • 15 Accesses

Abstract

In the broader machine learning literature, data-generation methods demonstrate promising results by generating additional informative training examples via augmenting sparse labels. Such methods are less studied in graphs due to the intricate dependencies among nodes in complex topology structures. This paper presents a novel node generation method that infuses a small set of high-quality synthesized nodes into the graph as additional labeled nodes to optimally expand the propagation of labeled information. By simply infusing additional nodes, the framework is orthogonal to the graph learning and downstream classification techniques, and thus is compatible with most popular graph pre-training (self-supervised learning), semi-supervised learning, and meta-learning methods. The contribution lies in designing the generated node set by solving a novel optimization problem. The optimization places the generated nodes in a manner that: (1) minimizes the classification loss to guarantee training accuracy and (2) maximizes label propagation to low-confidence nodes in the downstream task to ensure high-quality propagation. Theoretically, we show that the above dual optimization maximizes the global confidence of node classification. Our Experiments demonstrate statistically significant performance improvements over 14 baselines on 10 publicly available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding, K., Wang, J., Caverlee, J., Liu, H.: Meta propagation networks for graph few-shot semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 6, pp. 6524–6531 (2022)

    Google Scholar 

  2. Liu, Y., Ding, K., Wang, J., Lee, V., Liu, H., Pan, S.: Learning strong graph neural networks with weak information. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1559–1571 (2023)

    Google Scholar 

  3. Chen, Y., Coskunuzer, B., Gel, Y.: Topological relational learning on graphs. In: Advances in Neural Information Processing Systems, vol. 34, pp. 27 029–27 042 (2021)

    Google Scholar 

  4. Tan, Z., Ding, K., Guo, R., Liu, H.: Supervised graph contrastive learning for few-shot node classification. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 394–411. Springer (2022)

    Google Scholar 

  5. Yao, H., et al.: Graph few-shot learning via knowledge transfer. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp. 6656–6663 (2020)

    Google Scholar 

  6. Giannone, G., Winther, O.: Scha-VAE: hierarchical context aggregation for few-shot generation. In: International Conference on Machine Learning, pp. 7550–7569. PMLR (2022)

    Google Scholar 

  7. Liu, Y., Li, M., Li, X., Giunchiglia, F., Feng, X., Guan, R.: Few-shot node classification on attributed networks with graph meta-learning. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 471–481 (2022)

    Google Scholar 

  8. Wang, S., Tan, Z., Liu, H., Li, J.: Contrastive meta-learning for few-shot node classification. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2386–2397 (2023)

    Google Scholar 

  9. Tan, Z., Wang, S., Ding, K., Li, J., Liu, H.: Transductive linear probing: a novel framework for few-shot node classification. In: Learning on Graphs Conference, pp. 4–1. PMLR (2022)

    Google Scholar 

  10. Duan, S., Li, W., Cai, J., He, Y., Wu, Y.: Query-variant advertisement text generation with association knowledge. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 412–421 (2021)

    Google Scholar 

  11. Liu, G., Zhao, T., Xu, J., Luo, T., Jiang, M.: Graph rationalization with environment-based augmentations. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1069–1078 (2022)

    Google Scholar 

  12. Sohn, H., Park, B.: Robust and informative text augmentation (RITA) via constrained worst-case transformations for low-resource named entity recognition. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1616–1624 (2022)

    Google Scholar 

  13. Yao, H., Zhang, L., Finn, C.: Meta-learning with fewer tasks through task interpolation. arXiv preprint arXiv:2106.02695 (2021)

  14. Zhu, Y., Xu, Y., Yu, Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131 (2020)

  15. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019)

    Google Scholar 

  16. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)

    Google Scholar 

  17. Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Networks 6(1), 1–23 (2019). https://doi.org/10.1186/s40649-019-0069-y

    Article  MATH  Google Scholar 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  19. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  20. Hou, Z., et al.: Graphmae: self-supervised masked graph autoencoders. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 594–604 (2022)

    Google Scholar 

  21. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

  22. You, Y., Chen, T., Shen, Y., Wang, Z.: Graph contrastive learning automated. In: International Conference on Machine Learning, pp. 12 121–12 132. PMLR (2021)

    Google Scholar 

  23. Kim, S., Lee, J., Lee, N., Kim, W., Choi, S., Park, C.: Task-equivariant graph few-shot learning. arXiv preprint arXiv:2305.18758 (2023)

  24. Zhou, F., Cao, C., Zhang, K., Trajcevski, G., Zhong, T., Geng, J.: Meta-GNN: on few-shot node classification in graph meta-learning. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2357–2360 (2019)

    Google Scholar 

  25. Wang, S., Ding, K., Zhang, C., Chen, C., Li, J.: Task-adaptive few-shot node classification. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1910–1919 (2022)

    Google Scholar 

  26. Ding, K., Xu, Z., Tong, H., Liu, H.: Data augmentation for deep graph learning: a survey. ACM SIGKDD Explorations Newsl 24(2), 61–77 (2022)

    Article  MATH  Google Scholar 

  27. Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., Shah, N.: A unified view on graph neural networks as graph signal denoising. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 1202–1211 (2021)

    Google Scholar 

  28. Liu, H., Han, H., Jin, W., Liu, X., Liu, H.: Enhancing graph representations learning with decorrelated propagation. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1466–1476 (2023)

    Google Scholar 

  29. Liu, G., Zhao, T., Inae, E., Luo, T., Jiang, M.: Semi-supervised graph imbalanced regression. arXiv preprint arXiv:2305.12087 (2023)

  30. Li, J., Zhou, P., Xiong, C., Hoi, S.C.: Prototypical contrastive learning of unsupervised representations. arXiv preprint arXiv:2005.04966 (2020)

  31. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: International Conference on Machine Learning, pp. 40–48. PMLR (2016)

    Google Scholar 

  32. Hu, W., et al.: Open graph benchmark: Datasets for machine learning on graphs. In: Advances in Neural Information Processing Systems, vol. 33, pp. 22 118–22 133 (2020)

    Google Scholar 

  33. Hou, Z., et al.: Graphmae2: a decoding-enhanced masked self-supervised graph learner. In: Proceedings of the ACM Web Conference 2023 (WWW’23) (2023)

    Google Scholar 

  34. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive representation learning. In: ICML Workshop on Graph Representation Learning and Beyond 2020. http://arxiv.org/abs/2006.04131

  35. Thakoor, S., et al.: Large-scale representation learning on graphs via bootstrapping. International Conference on Learning Representations (ICLR) (2022)

    Google Scholar 

  36. Zhang, H., Wu, Q., Yan, J., Wipf, D., Yu, P.S.: From canonical correlation analysis to self-supervised graph neural networks. Adv. Neural. Inf. Process. Syst. 34, 76–89 (2021)

    MATH  Google Scholar 

  37. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  38. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)

    Google Scholar 

  39. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, H., Abdelzaher, T. (2025). Node Generation for Node Classification in Sparsely-Labeled Graphs. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15211. Springer, Cham. https://doi.org/10.1007/978-3-031-78541-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78541-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78540-5

  • Online ISBN: 978-3-031-78541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics