Skip to main content

IntelliSMART: Intelligent Semantic Machine-Assisted Research Tool

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Abstract

The exponential growth of academic literature presents significant challenges for researchers attempting to find relevant information. Traditional keyword-based retrieval systems often fail to address issues such as synonyms, homonyms, and semantic nuances, leading to suboptimal search results. This paper introduces a novel system called IntelliSMART (Intelligent Semantic Machine-Assisted Research Tool), which leverages large language models (LLMs) and advanced semantic processing techniques to improve the retrieval of academic literature. Our approach integrates query rewriting, embedding generation, efficient indexing, and complex article retrieval mechanisms to provide highly accurate and contextually relevant results that align with the user’s intent. The IntelliSMART system features a user-friendly front end that facilitates intuitive query input, along with a robust back end for handling user queries, generating embeddings, indexing extensive collections of academic papers, and efficiently retrieving the most relevant documents. The proposed system shows significant improvements over conventional methods, highlighting its potential to transform the search experience in academic research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, Y., et al.: Large language models for information retrieval: a survey, 2024

    Google Scholar 

  2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technology Behind Search, 2nd edn. Addison-Wesley Publishing Company, USA (2011)

    MATH  Google Scholar 

  3. Mao, R., et al.: A survey on semantic processing techniques. Inf. Fusion 101, 101988 (2024). https://www.sciencedirect.com/science/article/pii/S1566253523003044

  4. Abdul-Jaleel, N., et al.: Umass at trec 2004: novelty and hard, Computer Science Department Faculty Publication Series, p. 189, 2004

    Google Scholar 

  5. Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach to information retrieval. In: Proceedings of the Tenth International Conference on Information and Knowledge Management, pp. 403–410, 2001

    Google Scholar 

  6. Metzler, D., Croft, W.B.: A Markov random field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 472–479, 2005

    Google Scholar 

  7. Zheng, Z., Hui, K., He, B., Han, X., Sun, L., Yates, A.: Bert-qe: contextualized query expansion for document re-ranking, arXiv preprint arXiv:2009.07258, 2020

  8. Diaz, F., Mitra, B., Craswell, N.: Query expansion with locally-trained word embeddings, arXiv preprint arXiv:1605.07891, 2016

  9. Kuzi, S., Shtok, A., Kurland, O.: Query expansion using word embeddings. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1929–1932, 2016

    Google Scholar 

  10. Mackie, I., Sekulic, I., Chatterjee, S., Dalton, J., Crestani, F.: GRM: generative relevance modeling using relevance-aware sample estimation for document retrieval, arXiv preprint arXiv:2306.09938, 2023

  11. Srinivasan, K., Raman, K., Samanta, A., Liao, L., Bertelli, L., Bendersky, M.: Quill: query intent with large language models using retrieval augmentation and multi-stage distillation, arXiv preprint arXiv:2210.15718, 2022

  12. Feng, J., et al.: Knowledge refinement via interaction between search engines and large language models, arXiv preprint arXiv:2305.07402, 2023

  13. Mackie, I., Chatterjee, S., Dalton, J.: Generative and pseudo-relevant feedback for sparse, dense and learned sparse retrieval, arXiv preprint arXiv:2305.07477, 2023

  14. Gao, L., Ma, X., Lin, J., Callan, J.: Precise zero-shot dense retrieval without relevance labels, arXiv preprint arXiv:2212.10496, 2022

  15. Jagerman, R., Zhuang, H., Qin, Z., Wang, X., Bendersky, M.: Query expansion by prompting large language models, arXiv preprint arXiv:2305.03653, 2023

  16. Tang, Y., Qiu, R., Li, X.: Prompt-based effective input reformulation for legal case retrieval. In: Australasian Database Conference. Springer, pp. 87–100, 2023

    Google Scholar 

  17. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.: Okapi at trec-3. Nist Spec. Publ. Sp 109, 109 (1995)

    Google Scholar 

  18. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering, arXiv preprint arXiv:2004.04906, 2020

  19. Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text retrieval, arXiv preprint arXiv:2007.00808, 2020

  20. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805, 2018

  21. Neelakantan, A., et al.: Text and code embeddings by contrastive pre-training, arXiv preprint arXiv:2201.10005, 2022

  22. Ma, X., Wang, L., Yang, N., Wei, F., Lin, J.: Fine-tuning llama for multi-stage text retrieval, arXiv preprint arXiv:2310.08319, 2023

  23. Asai, A., et al.: Task-aware retrieval with instructions, arXiv preprint arXiv:2211.09260, 2022

  24. Wei, J., et al.: Finetuned language models are zero-shot learners, arXiv preprint arXiv:2109.01652, 2021

  25. Li, M., et al.: Generate, filter, and fuse: Query expansion via multi-step keyword generation for zero-shot neural rankers, arXiv preprint arXiv:2311.09175, 2023

  26. Anand, A., Setty, V., Anand, A.,et al.: Context aware query rewriting for text rankers using llm, arXiv preprint arXiv:2308.16753, 2023

  27. Li, J., Tang, T., Zhao, W.X., Nie, J.-Y., Wen, J.-R.: Pretrained language models for text generation: a survey, arXiv preprint arXiv:2201.05273, 2022

  28. Mitra, B., Craswell, N.: Neural models for information retrieval, arXiv preprint arXiv:1705.01509, 2017

  29. Li, Z., Zhang, X., Zhang, Y., Long, D., Xie, P., Zhang, M.: Towards general text embeddings with multi-stage contrastive learning, arXiv preprint arXiv:2308.03281, 2023

  30. arXiv.org submitters, “arxiv dataset,” 2024. https://www.kaggle.com/dsv/7548853

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aadyant Khatri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khatri, A., Egierski, N., Pochamreddy, A., Alhamadani, A., Sarkar, S., Lu, CT. (2025). IntelliSMART: Intelligent Semantic Machine-Assisted Research Tool. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15214. Springer, Cham. https://doi.org/10.1007/978-3-031-78554-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78554-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78553-5

  • Online ISBN: 978-3-031-78554-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics