Skip to main content

Empowering Airline Route Decisions with LLM-Generated Pseudo-labels and Zero-Shot Review Prediction

  • Conference paper
  • First Online:
Social Networks Analysis and Mining (ASONAM 2024)

Abstract

The airline industry has suffered a severe impact due to the COVID-19 pandemic. It resulted in significant financial losses. Strategic route planning is now an urgent need to mitigate the ongoing crisis. Motivated by the importance of customer sentiment in informing airline route decisions, this paper presents EAGLE (Enhancing Airline Groundtruth Labels and rEview rating prediction), a novel two-stage framework that leverages the power of Large Language Models (LLMs) to address the limitations of current works, which often rely on manual labeling and traditional machine learning models. In the first phase, EAGLE introduces a pseudo-labeling approach using LLMs to automatically label customer reviews to reduce the need for manual annotation and mitigate potential biases that exist in human labeling. The second phase employs a zero-shot LLM-based text classification method to predict customer sentiment and preferences from online reviews to provide a more accurate and context-aware analysis of customer feedback. Through extensive experiments, we demonstrate the effectiveness and robustness of EAGLE to demonstrate its superior performance compared to existing techniques. The proposed framework empowers airline companies to make data-driven decisions about route expansions, considering customer preferences and sentiments. Our contribution fibs in enhancing the objectivity of sentiment analysis and providing a comprehensive and scalable solution for airline route planning in the post-pandemic era, eventually leading to improved customer satisfaction and optimized operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.airlinequality.com.

References

  1. Alanazi, M.S.M., Li, J., Jenkins, K.W.: Multiclass sentiment prediction of airport service online reviews using aspect-based sentimental analysis and machine learning. Mathematics 12(5), 781 (2024)

    Article  Google Scholar 

  2. COVID, I.I.U.: Financial impacts-relief measures needed-[press release] (2020). https://www.iata.org/en/pressroom/pr/2020-03-05-01

  3. Dube, K., Nhamo, G.: Major global aircraft manufacturers and emerging responses to the SDGS agenda. In: Scaling Up SDGs Implementation: Emerging Cases from State, Development and Private Sectors, pp. 99–113 (2020)

    Google Scholar 

  4. Dube, K., Nhamo, G., Chikodzi, D.: COVID-19 pandemic and prospects for recovery of the global aviation industry. J. Air Transp. Manag. 92, 102022 (2021)

    Article  Google Scholar 

  5. Gitto, S., Mancuso, P.: Improving airport services using sentiment analysis of the websites. Tour. Manag. Perspect. 22, 132–136 (2017)

    Google Scholar 

  6. Gössling, S., Scott, D., Hall, C.M.: Pandemics, tourism and global change: a rapid assessment of COVID-19. J. Sustain. Tour. 29(1), 1–20 (2020)

    Article  Google Scholar 

  7. Gupta, M., Kumar, R., Walia, H., Kaur, G.: Airlines based twitter sentiment analysis using deep learning. In: 2021 5th International Conference on Information Systems and Computer Networks (ISCON), pp. 1–6 (2021). https://doi.org/10.1109/ISCON52037.2021.9702502

  8. Halpern, N., Graham, A.: Airport route development: a survey of current practice. Tour. Manag. 46, 213–221 (2015). https://doi.org/10.1016/j.tourman.2014.06.011. https://www.sciencedirect.com/science/article/pii/S0261517714001137

  9. Homaid, M.S., Bisandu, D.B., Moulitsas, I., Jenkins, K.: Analysing the sentiment of air-traveller: a comparative analysis. Int. J. Comput. Theory Eng. 14(2), 48–53 (2022)

    Article  Google Scholar 

  10. Huse, C., Evangelho, F.: Investigating business traveller heterogeneity: low-cost vs full-service airline users? Transp. Res. Part E: Logist. Transp. Rev. 43(3), 259–268 (2007)

    Article  Google Scholar 

  11. Iddrisu, A.M., Mensah, S., Boafo, F., Yeluripati, G.R., Kudjo, P.: A sentiment analysis framework to classify instances of sarcastic sentiments within the aviation sector. Int. J. Inf. Manag. Data Insights 3(2), 100180 (2023)

    Google Scholar 

  12. Jing, X., Chennakesavan, A., Chandra, C., Bendarkar, M.V., Kirby, M., Mavris, D.N.: BERT for aviation text classification. In: AIAA AVIATION 2023 Forum, p. 3438 (2023)

    Google Scholar 

  13. Kwon, H.J., Ban, H.J., Jun, J.K., Kim, H.S.: Topic modeling and sentiment analysis of online review for airlines. Information 12(2), 78 (2021)

    Article  Google Scholar 

  14. Linden, E.: Pandemics and environmental shocks: what aviation managers should learn from COVID-19 for long-term planning. J. Air Transp. Manag. 90, 101944 (2021)

    Article  Google Scholar 

  15. Ljungström, J.: Mining the Skies: An Exploration of Airline Reviews Using LDA (2023). Student Paper

    Google Scholar 

  16. Mandal, S., Maiti, A.: Rating prediction with review network feedback: a new direction in recommendation. IEEE Trans. Comput. Soc. Syst. 9(3), 740–750 (2021)

    Article  Google Scholar 

  17. Møller, A., Pera, A., Dalsgaard, J., Aiello, L.: The parrot dilemma: human-labeled vs. LLM-augmented data in classification tasks. In: Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 179–192 (2024)

    Google Scholar 

  18. Nguyen, T.D.: An approach to improve the accuracy of rating prediction for recommender systems. Automatika 65(1), 58–72 (2024)

    Article  Google Scholar 

  19. Prabhakar, E., Santhosh, M., Krishnan, A.H., Kumar, T., Sudhakar, R.: Sentiment analysis of us airline twitter data using new adaboost approach. Int. J. Eng. Res. Technol. (IJERT) 7(1), 1–6 (2019)

    Google Scholar 

  20. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning. arXiv preprint arXiv:2101.06329 (2021)

  21. Schwenker, B., Wulf, T.: Scenario-Based Strategic Planning: Developing Strategies in an Uncertain World. Springer (2013)

    Google Scholar 

  22. Sobieralski, J.B.: COVID-19 and airline employment: insights from historical uncertainty shocks to the industry. Transp. Res. Interdisc. Perspect. 5, 100123 (2020)

    Google Scholar 

  23. staff, T.: ChatGPT vs Claude 3 test: can anthropic beat OpenAI’s superstar? Tech.co (2024)

    Google Scholar 

  24. Suau-Sanchez, P., Voltes-Dorta, A., Cugueró-Escofet, N.: An early assessment of the impact of COVID-19 on air transport: just another crisis or the end of aviation as we know it? J. Transp. Geogr. 86, 102749 (2020)

    Article  Google Scholar 

  25. Subroto, A., Christianis, M.: Rating prediction of peer-to-peer accommodation through attributes and topics from customer review. J. Big Data 8(1), 9 (2021)

    Article  Google Scholar 

  26. Sun, X., et al.: Text classification via large language models. In: Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 8990–9005 (2023)

    Google Scholar 

  27. Sun, X., Wandelt, S., Zhang, A.: COVID-19 pandemic and air transportation: summary of recent research, policy consideration and future research directions. Transp. Res. Interdisc. Perspect. 16, 100718 (2022)

    Google Scholar 

  28. Wang, C., Nulty, P., Lillis, D.: Using pseudo-labelled data for zero-shot text classification. In: International Conference on Applications of Natural Language to Information Systems, pp. 35–46. Springer (2022)

    Google Scholar 

  29. Wang, L., Guo, W., Yao, X., Zhang, Y., Yang, J.: Multimodal event-aware network for sentiment analysis in tourism. IEEE Multimedia 28(2), 49–58 (2021). https://doi.org/10.1109/MMUL.2021.3079195

    Article  Google Scholar 

  30. Wong, C.W., Cheung, T.K.Y., Zhang, A.: A connectivity-based methodology for new air route identification. Transp. Res. Part A: Policy Pract. 173, 103715 (2023)

    Google Scholar 

  31. Wu, S., Gao, Y.: Machine learning approach to analyze the sentiment of airline passengers’ tweets. Transp. Res. Rec. 2678(2), 48–56 (2024)

    Article  Google Scholar 

  32. Yang, W., Zhang, R., Chen, J., Wang, L., Kim, J.: Prototype-guided pseudo labeling for semi-supervised text classification. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 16369–16382 (2023)

    Google Scholar 

  33. Zahraee, S.M., et al.: A study on airlines’ responses and customer satisfaction during the COVID-19 pandemic. Int. J. Transp. Sci. Technol. 12(4), 1017–1037 (2023)

    Article  Google Scholar 

  34. Zhang, Y., et al.: Pushing the limit of LLM capacity for text classification. arXiv preprint arXiv:2402.07470 (2024)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdulaziz Alhamadani , Khadija Althubiti or Jianfeng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alhamadani, A. et al. (2025). Empowering Airline Route Decisions with LLM-Generated Pseudo-labels and Zero-Shot Review Prediction. In: Aiello, L.M., Chakraborty, T., Gaito, S. (eds) Social Networks Analysis and Mining. ASONAM 2024. Lecture Notes in Computer Science, vol 15214. Springer, Cham. https://doi.org/10.1007/978-3-031-78554-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78554-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78553-5

  • Online ISBN: 978-3-031-78554-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics