Skip to main content

Subset-Optimized BLS Multi-signature with Key Aggregation

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2024)

Abstract

We propose a variant of the original Boneh, Drijvers, and Neven (Asiacrypt’18) BLS multi-signature aggregation scheme, which is best suited to applications where the full set of potential signers is fixed and known and any subset I of this group can create a multi-signature over a message m. This setup is very common in proof-of-stake blockchains where if you assume a total of 3f validators, a \(2f+1\) majority can sign transactions and/or blocks and is secure against rogue-key attacks without requiring a proof of key possession mechanism.

In our scheme, instead of randomizing the aggregated signatures, we have a one-time randomization phase of the public keys: each public key is replaced by a sticky randomized version (for which each participant can still compute the derived private key). The main benefit compared to the original Boneh et al. approach is that since our randomization process happens only once and not per signature we can have significant savings during aggregation and verification without requiring a proof of possession. Specifically, for a subset I of t signers, we save t exponentiations in \(\mathbb {G}_2\) at aggregation and t exponentiations in \(\mathbb {G}_1\) at verification or vice versa, depending on which BLS mode we prefer: minPK (public keys in \(\mathbb {G}_1\)) or minSig (signatures in \(\mathbb {G}_1\)).

Interestingly, our security proof requires a significant departure from the co-CDH based proof of Boneh et al. When n (size of the universal set of signers) is small, we prove our protocol secure in the Algebraic Group and Random Oracle models based on the hardness of the Discrete Log problem. For larger n, our proof also requires the Random Modular Subset Sum (RMSS) problem.

F. Garillot, M. Sedaghat and P. Waiwitlikhit—Work done at Mysten Labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that aggregate signatures are a more general primitive, which as opposed to multi-signatures, allow the aggregation of n signatures of different messages in a short single signature.

  2. 2.

    https://github.com/Chia-Network/bls-signatures.

  3. 3.

    https://www.ietf.org/id/draft-irtf-cfrg-bls-signature-05.html.

  4. 4.

    This is much preferable to the PoP approach as it avoids the need for zero-knowledge proofs (which includes prover/verifier costs as well as support for ZK from the underlying blockchain.

  5. 5.

    In most cases, computing \(\textsf{pk}_i^\star \) does not need any secret, thus, this algorithm could be defined separately for \(\textsf{sk}\) and \(\textsf{pk}\).

  6. 6.

    We proposed SMSKR in the minSig mode, it can easily be extended to minPK.

  7. 7.

    The randomization of \(\textsf{pk}\) can happen by any third party – no secret required.

  8. 8.

    Note that the sign algorithm uses an already randomized secret key (and thus there is no need to parse \(\textsf{PK}\) again.).

  9. 9.

    As we explain in [2] the attack does not apply to [8].

  10. 10.

    https://github.com/MystenLabs/research/tree/main/cryptography/ bls_aggregation_combinatorics.

  11. 11.

    current number of validators is 800000 https://beaconscan.com/statistics.

  12. 12.

    https://github.com/MystenLabs/fastcrypto, (6eb758ba78612e5e22a2748dd7a4b2c8b3724377).

  13. 13.

    https://github.com/MystenLabs/fastcrypto/blob/mskr-bench/fastcrypto/src/mskr_bench.rs,(4d1bad60b6db5bfbb448d98d89a72cfaebab6e56).

References

  1. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008: 15th Conference on Computer and Communications Security, pp. 449–458. ACM Press, Alexandria, Virginia, USA (2008). https://doi.org/10.1145/1455770.1455827

  2. Baldimtsi, F., et al.: Subset-optimized BLS multi-signature with key aggregation. Cryptology ePrint Archive, Paper 2023/498 (2023). https://eprint.iacr.org/2023/498

  3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006: 13th Conference on Computer and Communications Security, pp. 390–399. ACM Press, Alexandria, Virginia, USA (2006). https://doi.org/10.1145/1180405.1180453

  4. bheisler: cargo-criterion. https://github.com/bheisler/cargo-criterion (2022)

  5. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  MATH  Google Scholar 

  6. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007: 14th Conference on Computer and Communications Security, pp. 276–285. ACM Press, Alexandria, Virginia, USA (2007). https://doi.org/10.1145/1315245.1315280

  7. Boneh, D., Drijvers, M., Neven, G.: Bls multi-signatures with public-key aggregation. https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html (2018)

  8. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for Smaller Blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_15

    Chapter  MATH  Google Scholar 

  9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30

    Chapter  MATH  Google Scholar 

  10. Brickell, E.F.: Solving low density Knapsacks. In: Chaum, D. (ed.) Advances in Cryptology - CRYPTO’83, pp. 25–37. Plenum Press, New York, USA, Santa Barbara, CA, USA (1983)

    MATH  Google Scholar 

  11. Coster, M.J., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.P.: An improved low-density subset sum algorithm. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 54–67. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_4

    Chapter  MATH  Google Scholar 

  12. Crites, E.C., Kohlweiss, M., Preneel, B., Sedaghat, M., Slamanig, D.: Threshold structure-preserving signatures. In: Guo, J., Steinfeld, R. (eds.) Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and Application of Cryptology and Information Security, Guangzhou, China, December 4-8, 2023, Proceedings, Part II. Lecture Notes in Computer Science, vol. 14439, pp. 348–382. Springer (2023). https://doi.org/10.1007/978-981-99-8724-5_11, https://doi.org/10.1007/978-981-99-8724-5_11

  13. Crites, E.C., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: Security of multi- and threshold signatures. IACR Cryptol. ePrint Arch. 1375 (2021). https://eprint.iacr.org/2021/1375

  14. Deirmentzoglou, E., Papakyriakopoulos, G., Patsakis, C.: A survey on long-range attacks for proof of stake protocols. IEEE Access 7, 28712–28725 (2019). https://doi.org/10.1109/ACCESS.2019.2901858, https://doi.org/10.1109/ACCESS.2019.2901858

  15. Drake, J.: Pragmatic signature aggregation with BLS - Sharding (2018). https://ethresear.ch/t/pragmatic-signature-aggregation-with-bls/2105

  16. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press, San Francisco, CA, USA (2019). https://doi.org/10.1109/SP.2019.00050

  17. Edginton, B.: Upgrading Ethereum. https://eth2book.info/bellatrix/

  18. El Bansarkhani, R., Sturm, J.: An efficient lattice-based multisignature scheme with applications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 140–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_9

    Chapter  MATH  Google Scholar 

  19. Ethereum Core developers: Ethereum Proof-of-Stake Consensus Specifications. https://github.com/ethereum/consensus-specs

  20. Frieze, A.M.: On the lagarias-odlyzko algorithm for the subset sum problem. SIAM J. Comput. 15(2), 536–539 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  MATH  Google Scholar 

  22. Fukumitsu, M., Hasegawa, S.: A lattice-based provably secure multisignature scheme in quantum random oracle model. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds.) ProvSec 2020. LNCS, vol. 12505, pp. 45–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62576-4_3

    Chapter  MATH  Google Scholar 

  23. Groth, J.: Non-interactive distributed key generation and key resharing (2021). https://eprint.iacr.org/2021/339, report Number: 339

  24. Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. J. Cryptology 9(4), 199–216 (1996). https://doi.org/10.1007/BF00189260

  25. Itakura, K.: A public-key cryptosystem suitable for digital multisignatures (1983)

    Google Scholar 

  26. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM (JACM) 32(1), 229–246 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lindell, Y.: Simple three-round multiparty schnorr signing with full simulatability. IACR Cryptol. ePrint Arch. 374 (2022). https://eprint.iacr.org/2022/374

  28. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_28

    Chapter  MATH  Google Scholar 

  29. Lyubashevsky, V.: On random high density subset sums. Electron. Colloquium Comput. Complex. TR05 (2005)

    Google Scholar 

  30. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001: 8th Conference on Computer and Communications Security, pp. 245–254. ACM Press, Philadelphia, PA, USA (2001). https://doi.org/10.1145/501983.502017

  31. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8

    Chapter  MATH  Google Scholar 

  32. Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020: 27th Conference on Computer and Communications Security, pp. 1717–1731. ACM Press, Virtual Event, USA (2020). https://doi.org/10.1145/3372297.3417236

  33. Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party signatures for user authentication. In: ISOC Network and Distributed System Security Symposium – NDSS 2003. The Internet Society, San Diego, CA, USA (2003)

    Google Scholar 

  34. Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir scheme. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 139–148. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_11

    Chapter  MATH  Google Scholar 

  35. Pan, J., Wagner, B.: Chopsticks: Fork-free two-round multi-signatures from non-interactive assumptions. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V. Lecture Notes in Computer Science, vol. 14008, pp. 597–627. Springer (2023). https://doi.org/10.1007/978-3-031-30589-4_21, https://doi.org/10.1007/978-3-031-30589-4_21

  36. Ristenpart, T., Yilek, S.: The power of proofs-of-possession: securing multiparty signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 228–245. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_13

    Chapter  MATH  Google Scholar 

  37. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) Advances in Cryptology – CRYPTO’ 89 Proceedings, pp. 239–252. Springer, New York, New York, NY (1990)

    Chapter  MATH  Google Scholar 

  38. Supranational: blst. https://github.com/supranational/blst (2022)

  39. Tessaro, S., Zhu, C.: Threshold and multi-signature schemes from linear hash functions. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V. Lecture Notes in Computer Science, vol. 14008, pp. 628–658. Springer (2023). https://doi.org/10.1007/978-3-031-30589-4_22, https://doi.org/10.1007/978-3-031-30589-4_22

  40. Vesely, P., Gurkan, K., Straka, M., Gabizon, A., Jovanovic, P., Konstantopoulos, G., Oines, A., Olszewski, M., Tromer, E.: Plumo: An Ultralight Blockchain Client. In: Financial Cryptography and Data Security: 26th International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers, pp. 597–614. Springer-Verlag, Berlin, Heidelberg (May 2022). https://doi.org/10.1007/978-3-031-18283-9_30, https://doi.org/10.1007/978-3-031-18283-9_30

  41. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19

    Chapter  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their valuable comments. We also thank the a16z crypto team for reviewing the paper, recommending improvements, and providing future extension ideas. In particular, we thank Dan Boneh (Stanford University) and Valeria Nikolaenko (a16z crypto research). Mahdi Sedaghat was supported in part by the Research Council KU Leuven C1 on Security and Privacy for Cyber-Physical Systems and the Internet of Things with contract number C16/15/058 and by CyberSecurity Research Flanders with reference number VR20192203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baldimtsi, F. et al. (2025). Subset-Optimized BLS Multi-signature with Key Aggregation. In: Clark, J., Shi, E. (eds) Financial Cryptography and Data Security. FC 2024. Lecture Notes in Computer Science, vol 14745. Springer, Cham. https://doi.org/10.1007/978-3-031-78679-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78679-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78678-5

  • Online ISBN: 978-3-031-78679-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics