Skip to main content

Cross-scale Heterogeneous Convolution Change Detection Based on Spatial-Spectral Information Fusion for Remote Sensing Imagery

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2024)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1462))

Included in the following conference series:

  • 78 Accesses

Abstract

Change Detection in remote sensing images typically aims to accurately determine any significant land surface changes, based on acquired multi-temporal image data, being a pivotal task in remote sensing image processing. Recently, deep learning has been widely applied in machine vision with remarkable potential demonstrated for performing change detection in images. Current multi-scale feature fusion methods, while enhancing algorithm performance, often introduce a significant number of redundant parameters, thereby increasing model complexity. This paper presents a novel approach to addressing this challenge. A cross-scale heterogeneous convolution change detection method is proposed. It strengthens the perception of multi-scale information without adding excessive redundant parameters, mitigating the detail-blurring issues caused by fusion. By integrating scale perception with spatial-spectral information aggregation, the proposed approach effectively alleviates scale sensitivity issues, improving change detection performance in complex multi-scale environments. This is showcased by comparative experiments on a challenging real-world dataset with seven existing high-performing methods, the proposed method achieved an F1-score of 84.15% and an IoU of 72.64%, demonstrating the advancement of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

  2. Achard, F., et al.: Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583), 999–1002 (2002)

    Article  Google Scholar 

  3. Bovolo, F., Camps-Valls, G., Bruzzone, L.: A support vector domain method for change detection in multitemporal images. Pattern Recogn. Lett. 31(10), 1148–1154 (2010)

    Article  Google Scholar 

  4. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  5. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  6. Khelifi, L., Mignotte, M.: Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis. IEEE Access 8, 126385–126400 (2020)

    Article  Google Scholar 

  7. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018(1), 7068349 (2018)

    Google Scholar 

  8. Xie, Y., Zheng, J., Hou, X., Xi, Y., Tian, F.: Dynamic dual-peak network: a real-time human detection network in crowded scenes. J. Vis. Commun. Image Represent. 79, 103195 (2021)

    Article  Google Scholar 

  9. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603. IEEE (2013)

    Google Scholar 

  10. Hou, X., Bai, Y., Xie, Y., Li, Y.: Mass segmentation for whole mammograms via attentive multi-task learning framework. Phys. Med. Biol. 66(10), 105015 (2021)

    Article  Google Scholar 

  11. Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q.: Deep learning for remote sensing image classification: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 8(6), e1264 (2018)

    Article  Google Scholar 

  12. Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network. Remote Sens. 9(1), 67 (2017)

    Article  Google Scholar 

  13. Zhang, H., Li, Y., Jiang, Y., Wang, P., Shen, Q., Shen, C.: Hyperspectral classification based on lightweight 3-d-cnn with transfer learning. IEEE Trans. Geosci. Remote Sens. 57(8), 5813–5828 (2019)

    Article  Google Scholar 

  14. Hou, X., Bai, Y., Li, Y., Shang, C., Shen, Q.: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images. ISPRS J. Photogramm. Remote. Sens. 177, 103–115 (2021)

    Article  Google Scholar 

  15. Daudt, R.C., Le Saux, B., Boulch, A.: Fully convolutional siamese networks for change detection. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 4063–4067. IEEE (2018)

    Google Scholar 

  16. Fang, S., Li, K., Shao, J., Li, Z.: Snunet-cd: a densely connected siamese network for change detection of VHR images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  17. Hou, X., et al.: Deep collaborative learning with class-rebalancing for semi-supervised change detection in sar images. Knowl.-Based Syst. 264, 110281 (2023)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Peng, D., Zhang, Y., Guan, H.: End-to-end change detection for high resolution satellite images using improved unet++. Remote Sens. 11(11), 1382 (2019)

    Article  Google Scholar 

  20. Chen, H., Shi, Z.: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 12(10), 1662 (2020)

    Article  Google Scholar 

  21. Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L.: A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Chen, H., Qi, Z., Shi, Z.: Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021)

    Article  Google Scholar 

  24. Bandara, W.G.C., Patel, V.M.: A transformer-based siamese network for change detection. In: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 207–210. IEEE (2022)

    Google Scholar 

  25. Zhang, M., Shi, W.: A feature difference convolutional neural network-based change detection method. IEEE Trans. Geosci. Remote Sens. 58(10), 7232–7246 (2020)

    Article  Google Scholar 

  26. Peng, D., Bruzzone, L., Zhang, Y., Guan, H., Ding, H., Huang, X.: Semicdnet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Trans. Geosci. Remote Sens. 59(7), 5891–5906 (2020)

    Article  Google Scholar 

  27. Zhang, H., Gong, M., Zhang, P., Su, L., Shi, J.: Feature-level change detection using deep representation and feature change analysis for multispectral imagery. IEEE Geosci. Remote Sens. Lett. 13(11), 1666–1670 (2016)

    Article  Google Scholar 

  28. Gong, M., Yang, Y., Zhan, T., Niu, X., Li, S.: A generative discriminatory classified network for change detection in multispectral imagery. IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. 12(1), 321–333 (2019)

    Article  Google Scholar 

  29. Li, Z., et al.: Lightweight remote sensing change detection with progressive feature aggregation and supervised attention. IEEE Trans. Geosci. Remote Sens. 61, 1–12 (2023)

    Google Scholar 

  30. Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced nlp tasks. arXiv preprint arXiv:1911.02855 (2019)

  31. Guo, M.-H., et al.: Attention mechanisms in computer vision: a survey. Comput. visual media 8(3), 331–368 (2022)

    Article  Google Scholar 

  32. Nadaraya, E.A.: On estimating regression. Theory Probabil. Appl. 9(1), 141–142 (1964)

    Article  Google Scholar 

  33. Watson, G.S.: Smooth regression analysis Sankhyā: Indian J. Stat. Ser. A 359–372 (1964)

    Google Scholar 

  34. Fang, S., Li, K., Li, Z.: Changer: feature interaction is what you need for change detection. IEEE Trans. Geosci. Remote Sens. 61, 1–11 (2023)

    Google Scholar 

  35. Shang, C., Shen, Q.: Rough feature selection for neural network based image classification. Int. J. Image Graph. 2(04), 541–555 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjing Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, X., Lin, J., Shang, C., Shen, Q. (2024). Cross-scale Heterogeneous Convolution Change Detection Based on Spatial-Spectral Information Fusion for Remote Sensing Imagery. In: Zheng, H., Glass, D., Mulvenna, M., Liu, J., Wang, H. (eds) Advances in Computational Intelligence Systems. UKCI 2024. Advances in Intelligent Systems and Computing, vol 1462. Springer, Cham. https://doi.org/10.1007/978-3-031-78857-4_1

Download citation

Publish with us

Policies and ethics