Abstract
Change Detection in remote sensing images typically aims to accurately determine any significant land surface changes, based on acquired multi-temporal image data, being a pivotal task in remote sensing image processing. Recently, deep learning has been widely applied in machine vision with remarkable potential demonstrated for performing change detection in images. Current multi-scale feature fusion methods, while enhancing algorithm performance, often introduce a significant number of redundant parameters, thereby increasing model complexity. This paper presents a novel approach to addressing this challenge. A cross-scale heterogeneous convolution change detection method is proposed. It strengthens the perception of multi-scale information without adding excessive redundant parameters, mitigating the detail-blurring issues caused by fusion. By integrating scale perception with spatial-spectral information aggregation, the proposed approach effectively alleviates scale sensitivity issues, improving change detection performance in complex multi-scale environments. This is showcased by comparative experiments on a challenging real-world dataset with seven existing high-performing methods, the proposed method achieved an F1-score of 84.15% and an IoU of 72.64%, demonstrating the advancement of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Singh, A.: Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)
Achard, F., et al.: Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583), 999–1002 (2002)
Bovolo, F., Camps-Valls, G., Bruzzone, L.: A support vector domain method for change detection in multitemporal images. Pattern Recogn. Lett. 31(10), 1148–1154 (2010)
Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 27 (2014)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Khelifi, L., Mignotte, M.: Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis. IEEE Access 8, 126385–126400 (2020)
Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018(1), 7068349 (2018)
Xie, Y., Zheng, J., Hou, X., Xi, Y., Tian, F.: Dynamic dual-peak network: a real-time human detection network in crowded scenes. J. Vis. Commun. Image Represent. 79, 103195 (2021)
Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: an overview. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603. IEEE (2013)
Hou, X., Bai, Y., Xie, Y., Li, Y.: Mass segmentation for whole mammograms via attentive multi-task learning framework. Phys. Med. Biol. 66(10), 105015 (2021)
Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q.: Deep learning for remote sensing image classification: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 8(6), e1264 (2018)
Li, Y., Zhang, H., Shen, Q.: Spectral-spatial classification of hyperspectral imagery with 3d convolutional neural network. Remote Sens. 9(1), 67 (2017)
Zhang, H., Li, Y., Jiang, Y., Wang, P., Shen, Q., Shen, C.: Hyperspectral classification based on lightweight 3-d-cnn with transfer learning. IEEE Trans. Geosci. Remote Sens. 57(8), 5813–5828 (2019)
Hou, X., Bai, Y., Li, Y., Shang, C., Shen, Q.: High-resolution triplet network with dynamic multiscale feature for change detection on satellite images. ISPRS J. Photogramm. Remote. Sens. 177, 103–115 (2021)
Daudt, R.C., Le Saux, B., Boulch, A.: Fully convolutional siamese networks for change detection. In: 25th IEEE International Conference on Image Processing (ICIP), pp. 4063–4067. IEEE (2018)
Fang, S., Li, K., Shao, J., Li, Z.: Snunet-cd: a densely connected siamese network for change detection of VHR images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)
Hou, X., et al.: Deep collaborative learning with class-rebalancing for semi-supervised change detection in sar images. Knowl.-Based Syst. 264, 110281 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Peng, D., Zhang, Y., Guan, H.: End-to-end change detection for high resolution satellite images using improved unet++. Remote Sens. 11(11), 1382 (2019)
Chen, H., Shi, Z.: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sens. 12(10), 1662 (2020)
Shi, Q., Liu, M., Li, S., Liu, X., Wang, F., Zhang, L.: A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2021)
Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Chen, H., Qi, Z., Shi, Z.: Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2021)
Bandara, W.G.C., Patel, V.M.: A transformer-based siamese network for change detection. In: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 207–210. IEEE (2022)
Zhang, M., Shi, W.: A feature difference convolutional neural network-based change detection method. IEEE Trans. Geosci. Remote Sens. 58(10), 7232–7246 (2020)
Peng, D., Bruzzone, L., Zhang, Y., Guan, H., Ding, H., Huang, X.: Semicdnet: a semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Trans. Geosci. Remote Sens. 59(7), 5891–5906 (2020)
Zhang, H., Gong, M., Zhang, P., Su, L., Shi, J.: Feature-level change detection using deep representation and feature change analysis for multispectral imagery. IEEE Geosci. Remote Sens. Lett. 13(11), 1666–1670 (2016)
Gong, M., Yang, Y., Zhan, T., Niu, X., Li, S.: A generative discriminatory classified network for change detection in multispectral imagery. IEEE J. Sel. Topics Appl. Earth Observat. Remote Sens. 12(1), 321–333 (2019)
Li, Z., et al.: Lightweight remote sensing change detection with progressive feature aggregation and supervised attention. IEEE Trans. Geosci. Remote Sens. 61, 1–12 (2023)
Li, X., Sun, X., Meng, Y., Liang, J., Wu, F., Li, J.: Dice loss for data-imbalanced nlp tasks. arXiv preprint arXiv:1911.02855 (2019)
Guo, M.-H., et al.: Attention mechanisms in computer vision: a survey. Comput. visual media 8(3), 331–368 (2022)
Nadaraya, E.A.: On estimating regression. Theory Probabil. Appl. 9(1), 141–142 (1964)
Watson, G.S.: Smooth regression analysis Sankhyā: Indian J. Stat. Ser. A 359–372 (1964)
Fang, S., Li, K., Li, Z.: Changer: feature interaction is what you need for change detection. IEEE Trans. Geosci. Remote Sens. 61, 1–11 (2023)
Shang, C., Shen, Q.: Rough feature selection for neural network based image classification. Int. J. Image Graph. 2(04), 541–555 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hou, X., Lin, J., Shang, C., Shen, Q. (2024). Cross-scale Heterogeneous Convolution Change Detection Based on Spatial-Spectral Information Fusion for Remote Sensing Imagery. In: Zheng, H., Glass, D., Mulvenna, M., Liu, J., Wang, H. (eds) Advances in Computational Intelligence Systems. UKCI 2024. Advances in Intelligent Systems and Computing, vol 1462. Springer, Cham. https://doi.org/10.1007/978-3-031-78857-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-78857-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78856-7
Online ISBN: 978-3-031-78857-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)