Skip to main content

A Performance Study of Genetic Algorithms-Based Quantum Approximate Optimisation in the Context of Power Networks

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2024)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1462))

Included in the following conference series:

  • 108 Accesses

Abstract

Recently, the quantum computer’s ability to perform reliable computations beyond the capabilities of classical computing methods is referred to as quantum utility. To achieve this ability, it is becoming increasingly important to assess quantum algorithm performance in practical applications. Starting from this consideration, this work investigates the performance of the well-known Quantum Approximate Optimisation Algorithm (QAOA) with a Genetic Algorithm-based training in solving a real-world problem in the domain of power systems. As shown in the reported experiments using both an ideal simulator and a real IBM quantum processor, QAOA empowered by genetic algorithms outperforms the compared algorithms, particularly on real quantum hardware at the highest QAOA circuit depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ibm.com/quantum/qiskit.

References

  1. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  2. Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021). https://doi.org/10.1038/s42254-021-00348-9

    Article  Google Scholar 

  3. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). http://arxiv.org/abs/1411.4028

  4. Acampora, G., Chiatto, A., Vitiello, A.: Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm. Appl. Soft Comput. 142, 110296 (2023)

    Article  Google Scholar 

  5. Nickolov, E.C., Nickolov, E.: Critical information infrastructure protection: Analysis, evaluation and expectations. Int. J. 17, 105–119 (2005). https://www.researchgate.net/publication/228343373

  6. European Commission: Critical infrastructure protection. https://joint-research-centre.ec.europa.eu/scientific-activities-z/critical-infrastructure-protection_en. Accessed 29 July 2024

  7. Liu, B., Li, Z., Chen, X., Huang, Y., Liu, X.: Recognition and vulnerability analysis of key nodes in power grid based on complex network centrality. IEEE Trans. Circuits Syst. II Express Briefs 65, 346–350 (2018)

    Google Scholar 

  8. Zio, E.: Challenges in the vulnerability and risk analysis of critical infrastructures. Reliabil. Eng. Syst. Saf. 152, 137–150 (2016)

    Article  Google Scholar 

  9. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)

    Google Scholar 

  10. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953). https://doi.org/10.1007/BF02289026

    Article  Google Scholar 

  11. Page, L., Brin, S.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  12. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999). https://doi.org/10.1145/324133.324140

    Article  MathSciNet  Google Scholar 

  13. Sabidussi, G.: The centrality of a graph. Psychometrika 31, 581–603 (1966). https://pubmed.ncbi.nlm.nih.gov/5232444/

  14. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977). http://www.jstor.org/stable/3033543

  15. Anthonisse, J.M.: The rush in a directed graph. J. Comput. Phys. 1–10 (1971). https://api.semanticscholar.org/CorpusID:118421505

  16. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987). https://doi.org/10.1086/228631. https://www.journals.uchicago.edu/doi/10.1086/228631

  17. Akrobotu, P.D., James, T.E., Negre, C.F.A., Mniszewski, S.M.: A qubo formulation for top-eigencentrality nodes. PLOS ONE 17(7), e0271292 (2022). https://doi.org/10.1371/journal.pone.0271292

    Article  Google Scholar 

  18. Silva, G.S.M., Droguett, E.L.: Quantum computing optimization: application and benchmark in critical infrastructure assessment. In: 2024 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–7 (2024)

    Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, vol. 2. Cambridge university press, Cambridge (2001)

    Google Scholar 

  20. Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 1–14 (2013). https://arxiv.org/abs/1302.5843v3

  21. Iyambo, P., Tzoneva, R.: Transient stability analysis of the ieee 14-bus electric power system. In: AFRICON 2007, pp. 1–9. IEEE (2007)

    Google Scholar 

  22. Liu, B., Liu, F., Zhai, B., Lan, H.: Investigating continuous power flow solutions of IEEE 14-bus system. IEEJ Trans. Electr. Electron. Eng. 14(1), 157–159 (2019)

    Article  Google Scholar 

  23. Illinois Center for a Smarter Electric Grid (ICSEG): IEEE 14-Bus System. https://icseg.iti.illinois.edu/ieee-14-bus-system/. Accessed 29 July 2024

  24. Cuadra, L., Salcedo-Sanz, S., Del Ser, J., Jiménez-Fernández, S., Geem, Z.W.: A critical review of robustness in power grids using complex networks concepts. Energies 8(9), 9211–9265 (2015)

    Article  Google Scholar 

  25. Acampora, G., Cano Gutiérrez, C., Chiatto, A., Soto Hidalgo, J.M., Vitiello, A.: Evovaq: evolutionary algorithms-based toolbox for variational quantum circuits. SoftwareX 26, 101756 (2024)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Chiatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiatto, A., Alizadeh, A., Acampora, G., Vitiello, A., Pourabdollah, A., Lotfi, A. (2024). A Performance Study of Genetic Algorithms-Based Quantum Approximate Optimisation in the Context of Power Networks. In: Zheng, H., Glass, D., Mulvenna, M., Liu, J., Wang, H. (eds) Advances in Computational Intelligence Systems. UKCI 2024. Advances in Intelligent Systems and Computing, vol 1462. Springer, Cham. https://doi.org/10.1007/978-3-031-78857-4_23

Download citation

Publish with us

Policies and ethics