Abstract
Recently, the quantum computer’s ability to perform reliable computations beyond the capabilities of classical computing methods is referred to as quantum utility. To achieve this ability, it is becoming increasingly important to assess quantum algorithm performance in practical applications. Starting from this consideration, this work investigates the performance of the well-known Quantum Approximate Optimisation Algorithm (QAOA) with a Genetic Algorithm-based training in solving a real-world problem in the domain of power systems. As shown in the reported experiments using both an ideal simulator and a real IBM quantum processor, QAOA empowered by genetic algorithms outperforms the compared algorithms, particularly on real quantum hardware at the highest QAOA circuit depth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Cerezo, M., et al.: Variational quantum algorithms. Nat. Rev. Phys. 3(9), 625–644 (2021). https://doi.org/10.1038/s42254-021-00348-9
Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm (2014). http://arxiv.org/abs/1411.4028
Acampora, G., Chiatto, A., Vitiello, A.: Genetic algorithms as classical optimizer for the quantum approximate optimization algorithm. Appl. Soft Comput. 142, 110296 (2023)
Nickolov, E.C., Nickolov, E.: Critical information infrastructure protection: Analysis, evaluation and expectations. Int. J. 17, 105–119 (2005). https://www.researchgate.net/publication/228343373
European Commission: Critical infrastructure protection. https://joint-research-centre.ec.europa.eu/scientific-activities-z/critical-infrastructure-protection_en. Accessed 29 July 2024
Liu, B., Li, Z., Chen, X., Huang, Y., Liu, X.: Recognition and vulnerability analysis of key nodes in power grid based on complex network centrality. IEEE Trans. Circuits Syst. II Express Briefs 65, 346–350 (2018)
Zio, E.: Challenges in the vulnerability and risk analysis of critical infrastructures. Reliabil. Eng. Syst. Saf. 152, 137–150 (2016)
Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18, 39–43 (1953). https://doi.org/10.1007/BF02289026
Page, L., Brin, S.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999). https://doi.org/10.1145/324133.324140
Sabidussi, G.: The centrality of a graph. Psychometrika 31, 581–603 (1966). https://pubmed.ncbi.nlm.nih.gov/5232444/
Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977). http://www.jstor.org/stable/3033543
Anthonisse, J.M.: The rush in a directed graph. J. Comput. Phys. 1–10 (1971). https://api.semanticscholar.org/CorpusID:118421505
Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987). https://doi.org/10.1086/228631. https://www.journals.uchicago.edu/doi/10.1086/228631
Akrobotu, P.D., James, T.E., Negre, C.F.A., Mniszewski, S.M.: A qubo formulation for top-eigencentrality nodes. PLOS ONE 17(7), e0271292 (2022). https://doi.org/10.1371/journal.pone.0271292
Silva, G.S.M., Droguett, E.L.: Quantum computing optimization: application and benchmark in critical infrastructure assessment. In: 2024 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–7 (2024)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, vol. 2. Cambridge university press, Cambridge (2001)
Lucas, A.: Ising formulations of many np problems. Front. Phys. 2, 1–14 (2013). https://arxiv.org/abs/1302.5843v3
Iyambo, P., Tzoneva, R.: Transient stability analysis of the ieee 14-bus electric power system. In: AFRICON 2007, pp. 1–9. IEEE (2007)
Liu, B., Liu, F., Zhai, B., Lan, H.: Investigating continuous power flow solutions of IEEE 14-bus system. IEEJ Trans. Electr. Electron. Eng. 14(1), 157–159 (2019)
Illinois Center for a Smarter Electric Grid (ICSEG): IEEE 14-Bus System. https://icseg.iti.illinois.edu/ieee-14-bus-system/. Accessed 29 July 2024
Cuadra, L., Salcedo-Sanz, S., Del Ser, J., Jiménez-Fernández, S., Geem, Z.W.: A critical review of robustness in power grids using complex networks concepts. Energies 8(9), 9211–9265 (2015)
Acampora, G., Cano Gutiérrez, C., Chiatto, A., Soto Hidalgo, J.M., Vitiello, A.: Evovaq: evolutionary algorithms-based toolbox for variational quantum circuits. SoftwareX 26, 101756 (2024)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chiatto, A., Alizadeh, A., Acampora, G., Vitiello, A., Pourabdollah, A., Lotfi, A. (2024). A Performance Study of Genetic Algorithms-Based Quantum Approximate Optimisation in the Context of Power Networks. In: Zheng, H., Glass, D., Mulvenna, M., Liu, J., Wang, H. (eds) Advances in Computational Intelligence Systems. UKCI 2024. Advances in Intelligent Systems and Computing, vol 1462. Springer, Cham. https://doi.org/10.1007/978-3-031-78857-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-78857-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78856-7
Online ISBN: 978-3-031-78857-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)