Skip to main content

Topological and Simplicial Features in Reservoir Computing Networks

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2024)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1462))

Included in the following conference series:

  • 39 Accesses

Abstract

Reservoir computing is a framework which uses the non-linear internal dynamics of a recurrent neural network to perform complex non-linear transformations of the input. This enables reservoirs to carry out a variety of tasks involving the processing of time-dependent or sequential-based signals. Reservoirs are particularly suited for tasks that require memory or the handling of temporal sequences, common in areas such as speech recognition, time series prediction, and signal processing. Learning is restricted to the output layer and can be thought of as “reading out” or “selecting from” the states of the reservoir. With all but the output weights fixed they do not have the costly and difficult training associated with deep neural networks. However, while the reservoir computing framework shows a lot of promise in terms of efficiency and capability, it can be unreliable. Existing studies show that small changes in hyperparameters can markedly affect the network’s performance. Here we studied the role of network topologies in reservoir computing in the carrying out of three conceptually different tasks: working memory, perceptual decision making, and chaotic time-series prediction. We implemented three different network topologies (ring, lattice, and random) and tested reservoir network performances on the tasks. We then used algebraic topological tools of directed simplicial cliques to study deeper connections between network topology and function, making comparisons across performance and linking with existing reservoir research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharoni, R., Berger, E., Meshulam, R.: Eigenvalues and homology of flag complexes and vector representations of graphs. GAFA, Geom. Funct. Anal. 15(3), 555–566 (2005). https://doi.org/10.1007/s00039-005-0516-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006). https://doi.org/10.1016/j.physrep.2005.10.009

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohland, W., Minai, A.A.: Efficient associative memory using small-world architecture. Neurocomputing 38, 489–496 (2001). https://doi.org/10.1016/S0925-2312(01)00378-2

    Article  Google Scholar 

  4. Canaday, D.: Modeling and control of dynamical systems with reservoir computing. J. Phys. Complexity 2(3) (2019). https://doi.org/10.1088/2632-072X/ac24f3.

  5. Chung, F.: Spectral Graph Theory, vol. 92. in CBMS Regional Conference Series in Mathematics, vol. 92. Providence, Rhode Island: American Mathematical Society (1996). https://doi.org/10.1090/cbms/092.

  6. Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. EC-14(3), 326–334 (1965). https://doi.org/10.1109/PGEC.1965.264137.

  7. Cucchi, M., Abreu, S., Ciccone, G., Brunner, D., Kleemann, H.: Hands-on reservoir computing: a tutorial for practical implementation. Neuromorphic Comput. Eng. 2(3), 032002 (2022). https://doi.org/10.1088/2634-4386/ac7db7

    Article  Google Scholar 

  8. Dale, M., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A.: Reservoir computing quality: connectivity and topology. Nat. Comput. 20(2), 205–216 (2021). https://doi.org/10.1007/s11047-020-09823-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Damicelli, F., Hilgetag, C.C., Goulas, A.: Brain connectivity meets reservoir computing. PLoS Comput. Biol. 18(11), e1010639 (2022). https://doi.org/10.1371/journal.pcbi.1010639

    Article  Google Scholar 

  10. Deng, Z., Zhang, Y.: Collective behavior of a small-world recurrent neural system with scale-free distribution. IEEE Trans. Neural Netw. 18(5), 1364–1375 (2007)

    Article  MATH  Google Scholar 

  11. Erkaymaz, O., Özer, M., Yumuşak, N.: Performance analysis of a feed-forward artifical neural network with small-world topology. Procedia Technol. 1, 291–296 (2012). https://doi.org/10.1016/j.protcy.2012.02.062

    Article  MATH  Google Scholar 

  12. Haluszczynski, A., Räth, C.: Good and bad predictions: assessing and improving the replication of chaotic attractors by means of reservoir computing. Chaos Interdisc. J. Nonlinear Sci. 29(10), 103143 (2019). https://doi.org/10.1063/1.5118725

  13. Inubushi, M., Yoshimura, K., Ikeda, Y., Nagasawa, Y.: On the characteristics and structures of dynamical systems suitable for reservoir computing. In: Nakajima, K., Fischer, I. (eds.) Reservoir Computing. NCS, pp. 97–116. Springer, Singapore (2021). https://doi.org/10.1007/978-981-13-1687-6_5

    Chapter  MATH  Google Scholar 

  14. Jaeger, H.: Short term memory in echo state networks (2001). https://doi.org/10.24406/PUBLICA-FHG-291107.

  15. Kawai, Y., Park, J., Asada, M.: A small-world topology enhances the echo state property and signal propagation in reservoir computing. Neural Netw. 112, 15–23 (2019). https://doi.org/10.1016/j.neunet.2019.01.002

    Article  MATH  Google Scholar 

  16. Von Lautz, A., Herding, J., Blankenburg, F.: Neuronal signatures of a random-dot motion comparison task. Neuroimage 193, 57–66 (2019). https://doi.org/10.1016/j.neuroimage.2019.02.071

    Article  MATH  Google Scholar 

  17. Lovász, L.: Large Networks and Graph Limits, vol. 60. Colloquium Publications. American Mathematical Society, Providence (2012). https://doi.org/10.1090/coll/060.

  18. Manevitz, L., Hazan, H.: Stability and topology in reservoir computing. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010. LNCS (LNAI), vol. 6438, pp. 245–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16773-7_21

    Chapter  MATH  Google Scholar 

  19. Mohar, B., Alavi, Y., Chartrand, G., Oellermann, O.: The Laplacian spectrum of graphs. Graph Theory Comb. Appl. 2, 871–898 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Momani, S., Pham, V.-T., Wei, Z.: Directed simplicial complexes in brain real-world networks. Eur. Phys. J. Spec. Top. 233(4), 807–816 (2024). https://doi.org/10.1140/epjs/s11734-024-01159-6

    Article  MATH  Google Scholar 

  21. Munkres, J.R.: Elements of Algebraic Topology, 1st edn. CRC Press, Boca Raton (2018). https://doi.org/10.1201/9780429493911.

  22. Pathak, J., et al.: Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model. Chaos Interdisc. J. Nonlinear Sci. 28(4), 041101 (2018). https://doi.org/10.1063/1.5028373

  23. Perin, R., Berger, T.K., Markram, H.: A synaptic organizing principle for cortical neuronal groups. Proc. Natl. Acad. Sci. USA 108(13), 5419–5424 (2011). https://doi.org/10.1073/pnas.1016051108

    Article  MATH  Google Scholar 

  24. Racca, A., Magri, L.: Robust optimization and validation of echo state networks for learning chaotic dynamics (2021). https://doi.org/10.48550/ARXIV.2103.03174

  25. Reimann, M.W., et al.: Cliques of neurons bound into cavities provide a missing link between structure and function. Front. Comput. Neurosci. 11, 48 (2017). https://doi.org/10.3389/fncom.2017.00048

    Article  MATH  Google Scholar 

  26. Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural Netw. 22(1), 131–144 (2010). https://doi.org/10.1109/TNN.2010.2089641

  27. Rodriguez, N., Izquierdo, E., Ahn, Y.-Y.: Optimal modularity and memory capacity of neural reservoirs. Netw. Neurosci. 3(2), 551–566 (2019). https://doi.org/10.1162/netn_a_00082

    Article  MATH  Google Scholar 

  28. Rorie, A.E., Newsome, W.T.: A general mechanism for decision-making in the human brain? Trends Cogn. Sci. 9(2), 41–43 (2005). https://doi.org/10.1016/j.tics.2004.12.007

    Article  MATH  Google Scholar 

  29. Shadlen, M.N., Newsome, W.T.: Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86(4), 1916–1936 (2001). https://doi.org/10.1152/jn.2001.86.4.1916

    Article  MATH  Google Scholar 

  30. Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3(3), e68 (2005). https://doi.org/10.1371/journal.pbio.0030068

    Article  Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998). https://doi.org/10.1038/30918

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Faculty of Engineering, University of Bristol, for a visiting scholarship and the Northern Ireland Department for the Economy for a PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James McAllister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McAllister, J., Wade, J., Houghton, C., O’Donnell, C. (2024). Topological and Simplicial Features in Reservoir Computing Networks. In: Zheng, H., Glass, D., Mulvenna, M., Liu, J., Wang, H. (eds) Advances in Computational Intelligence Systems. UKCI 2024. Advances in Intelligent Systems and Computing, vol 1462. Springer, Cham. https://doi.org/10.1007/978-3-031-78857-4_5

Download citation

Publish with us

Policies and ethics