Skip to main content

A Hybrid Performance Estimation Strategy for Optimizing Neural Architecture Search

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2024)

Abstract

The emergence of neural architecture search (NAS) technology has lowered the professional threshold for optimizing model architectures. However, existing NAS methods primarily evaluate performance by fully training a network architecture, which is computationally expensive and slow. This paper proposes a hybrid performance estimation strategy search framework for neural architecture search, which can flexibly adjust the performance evaluation strategy at each stage. In the initial stage, this study uses less accurate but low-cost methods to quickly eliminate suboptimal architectures. As the search progresses, more computationally intensive but accurate evaluation strategies are employed to filter out the optimal network architectures. In the final stage, more precise verification is conducted to ensure that the selected network architecture achieves the best performance in practice. This research can adapt to different precision and speed requirements, providing flexible reduction space ratio strategies aimed at meeting accuracy requirements while maintaining efficiency. Its generalizability and flexibility help address various NAS challenges. Experimental results show that the method proposed in this study performs excellently in multiple benchmark tests, achieving a balance between performance and efficiency. Additionally, by testing on other search spaces, datasets, and tasks, this study demonstrates its good generalization ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelfattah, M.S., Mehrotra, A., Dudziak, Ł., Lane, N.D.: Zero-cost proxies for lightweight NAS. arXiv preprint arXiv:2101.08134 (2021)

  2. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  3. Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Casale, F.P., Gordon, J., Fusi, N.: Probabilistic neural architecture search. arXiv preprint arXiv:1902.05116 (2019)

  5. Chen, W., Gong, X., Wang, Z.: Neural architecture search on imagenet in four GPU hours: a theoretically inspired perspective. In: International Conference on Learning Representations (2020)

    Google Scholar 

  6. Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1294–1303 (2019)

    Google Scholar 

  7. Chu, X., Wang, X., Zhang, B., Lu, S., Wei, X., Yan, J.: DARTS-: robustly stepping out of performance collapse without indicators. In: International Conference on Learning Representations (2020)

    Google Scholar 

  8. Chu, X., Zhang, B., Xu, R.: FairNAS: rethinking evaluation fairness of weight sharing neural architecture search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12,239–12,248 (2021)

    Google Scholar 

  9. Chu, X., Zhou, T., Zhang, B., Li, J.: Fair DARTS: eliminating unfair advantages in differentiable architecture search. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 465–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_28

    Chapter  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  11. Dong, X., Yang, Y.: NAS-bench-201: extending the scope of reproducible neural architecture search. In: International Conference on Learning Representations (2019)

    Google Scholar 

  12. Dong, X., Yang, Y.: One-shot neural architecture search via self-evaluated template network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3681–3690 (2019)

    Google Scholar 

  13. Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU hours. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761–1770 (2019)

    Google Scholar 

  14. Elsken, T., et al.: NASLIB: a modular and flexible neural architecture search library. J. Mach. Learn. Res. 22(200), 1–8 (2021)

    Google Scholar 

  15. Guo, Z., et al.: Single path one-shot neural architecture search with uniform sampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 544–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_32

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  18. Kramer, O., Kramer, O.: Scikit-learn. In: Machine Learning for Evolution Strategies, pp. 45–53. Springer. Cham (2016). https://doi.org/10.1007/978-3-319-33383-0_5

  19. Krishnakumar, A., White, C., Zela, A., Tu, R., Safari, M., Hutter, F.: NAS-bench-suite-zero: accelerating research on zero cost proxies. Adv. Neural. Inf. Process. Syst. 35, 28037–28051 (2022)

    Google Scholar 

  20. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. In: Handbook of Systemic Autoimmune Diseases, vol. 1, no. 4 (2009)

    Google Scholar 

  21. Li, G., Qian, G., Delgadillo, I.C., Muller, M., Thabet, A., Ghanem, B.: SGAS: sequential greedy architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1620–1630 (2020)

    Google Scholar 

  22. Lin, M., et al.: Zen-NAS: a zero-shot NAS for high-performance image recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 347–356 (2021)

    Google Scholar 

  23. Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2

    Chapter  Google Scholar 

  24. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  25. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  26. Mellor, J., Turner, J., Storkey, A., Crowley, E.J.: Neural architecture search without training. In: International Conference on Machine Learning, pp. 7588–7598. PMLR (2021)

    Google Scholar 

  27. Moser, B., Raue, F., Hees, J., Dengel, A.: Less is more: proxy datasets in NAS approaches. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1953–1961 (2022)

    Google Scholar 

  28. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture search via parameters sharing. In: International Conference on Machine Learning, pp. 4095–4104. PMLR (2018)

    Google Scholar 

  29. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  30. Tanaka, H., Kunin, D., Yamins, D.L., Ganguli, S.: Pruning neural networks without any data by iteratively conserving synaptic flow. Adv. Neural. Inf. Process. Syst. 33, 6377–6389 (2020)

    Google Scholar 

  31. Xie, S., Zheng, H., Liu, C., Lin, L.: SNAS: stochastic neural architecture search. In: International Conference on Learning Representations (2018)

    Google Scholar 

  32. Xu, Y., et al.: PC-DARTS: partial channel connections for memory-efficient architecture search. arXiv preprint arXiv:1907.05737 (2019)

  33. Yu, K., Ranftl, R., Salzmann, M.: How to train your super-net: an analysis of training heuristics in weight-sharing NAS. arXiv preprint arXiv:2003.04276 (2020)

  34. Zhang, M., Pan, S., Chang, X., Su, S., Hu, J., Haffari, G.R., Yang, B.: Balenas: Differentiable architecture search via the bayesian learning rule. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11,871–11,880 (2022)

    Google Scholar 

  35. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  36. Zheng, X., et al.: Neural architecture search with representation mutual information. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11,912–11,921 (2022)

    Google Scholar 

  37. Zheng, X., et al.: MIGO-NAS: towards fast and generalizable neural architecture search. IEEE Trans. Pattern Anal. Mach. Intell. 43(9), 2936–2952 (2021)

    Article  Google Scholar 

  38. Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., Tian, Q.: Multinomial distribution learning for effective neural architecture search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1304–1313 (2019)

    Google Scholar 

  39. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  40. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Chao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L. et al. (2024). A Hybrid Performance Estimation Strategy for Optimizing Neural Architecture Search. In: Zheng, H., Glass, D., Mulvenna, M., Liu, J., Wang, H. (eds) Advances in Computational Intelligence Systems. UKCI 2024. Advances in Intelligent Systems and Computing, vol 1462. Springer, Cham. https://doi.org/10.1007/978-3-031-78857-4_6

Download citation

Publish with us

Policies and ethics