Skip to main content

Explainable AI in Time-Sensitive Scenarios: Prefetched Offline Explanation Model

  • Conference paper
  • First Online:
Discovery Science (DS 2024)

Abstract

As predictive machine learning models become increasingly adopted and advanced, their role has evolved from merely predicting outcomes to actively shaping them. This evolution has underscored the importance of Trustworthy AI, highlighting the necessity to extend our focus beyond mere accuracy and toward a comprehensive understanding of these models’ behaviors within the specific contexts of their applications. To further progress in explainability, we introduce poem, Prefetched Offline Explanation Model, a model-agnostic, local explainability algorithm for image data. The algorithm generates exemplars, counterexemplars and saliency maps to provide quick and effective explanations suitable for time-sensitive scenarios. Leveraging an existing local algorithm, poem infers factual and counterfactual rules from data to create illustrative examples and opposite scenarios with an enhanced stability by design. A novel mechanism then matches incoming test points with an explanation base and produces diverse exemplars, informative saliency maps and believable counterexemplars. Experimental results indicate that poem outperforms its predecessor abele in speed and ability to generate more nuanced and varied exemplars alongside more insightful saliency maps and valuable counterexemplars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    github.com/gatto/poem.

References

  1. Barocas, S., Hardt, M., Narayanan, A.: Fairness and abstraction in sociotechnical systems. In: Conference on Fairness, Accountability, and Transparency (2019)

    Google Scholar 

  2. Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D., Rinzivillo, S.: Benchmarking and survey of explanation methods for black box models. Data Min. Knowl. Disc. 37, 1719–1778 (2023)

    Article  MathSciNet  Google Scholar 

  3. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers (2017)

    Google Scholar 

  4. European Commission, H.L.E.G.o.A.I.: Ethics guidelines for trustworthy AI (2019)

    Google Scholar 

  5. Gomez, T., Fréour, T., Mouchère, H.: Metrics for saliency map evaluation of deep learning explanation methods. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds.) ICPRAI 2022. LNCS, vol. 13363, pp. 84–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09037-0_8

    Chapter  MATH  Google Scholar 

  6. Guidotti, R., Monreale, A., Matwin, S., Pedreschi, D.: Black box explanation by learning image exemplars in the latent feature space. In: ECML/PKDD, vol. 11906, pp. 189–205 (2019)

    Google Scholar 

  7. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems (2018)

    Google Scholar 

  8. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. Comput. Surv. 51(5) (2019)

    Google Scholar 

  9. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)

  10. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)

    Google Scholar 

  11. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders. CoRR abs/1511.05644 (2015)

    Google Scholar 

  12. Metta, C., et al.: Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning. Int. J. Data Sci. Anal. (2023)

    Google Scholar 

  13. Metta, C., Guidotti, R., Yin, Y., Gallinari, P., Rinzivillo, S.: Exemplars and counterexemplars explanations for image classifiers, targeting skin lesion labeling. In: IEEE ISCC (2021)

    Google Scholar 

  14. O’Neil, C.: Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown (2016)

    Google Scholar 

  15. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: KDD, pp. 1135–1144. ACM (2016)

    Google Scholar 

  16. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5) (2019)

    Google Scholar 

  17. van de Ven, G.M., Tuytelaars, T., Tolias, A.S.: Three types of incremental learning. Nat. Mach. Intell. 4 (2022)

    Google Scholar 

Download references

Acknowledgements

Research partly funded by PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI”, funded by the European Commission under the NextGeneration EU programme, G.A. 871042 SoBigData++, G.A. 101092749 CREXDATA, ERC-2018-ADG G.A. 834756 XAI, “SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics” - Prot. IR0000013, G.A. 101120763 TANGO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Metta .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Russo, F.M., Metta, C., Monreale, A., Rinzivillo, S., Pinelli, F. (2025). Explainable AI in Time-Sensitive Scenarios: Prefetched Offline Explanation Model. In: Pedreschi, D., Monreale, A., Guidotti, R., Pellungrini, R., Naretto, F. (eds) Discovery Science. DS 2024. Lecture Notes in Computer Science(), vol 15244. Springer, Cham. https://doi.org/10.1007/978-3-031-78980-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78980-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78979-3

  • Online ISBN: 978-3-031-78980-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics