Abstract
As predictive machine learning models become increasingly adopted and advanced, their role has evolved from merely predicting outcomes to actively shaping them. This evolution has underscored the importance of Trustworthy AI, highlighting the necessity to extend our focus beyond mere accuracy and toward a comprehensive understanding of these models’ behaviors within the specific contexts of their applications. To further progress in explainability, we introduce poem, Prefetched Offline Explanation Model, a model-agnostic, local explainability algorithm for image data. The algorithm generates exemplars, counterexemplars and saliency maps to provide quick and effective explanations suitable for time-sensitive scenarios. Leveraging an existing local algorithm, poem infers factual and counterfactual rules from data to create illustrative examples and opposite scenarios with an enhanced stability by design. A novel mechanism then matches incoming test points with an explanation base and produces diverse exemplars, informative saliency maps and believable counterexemplars. Experimental results indicate that poem outperforms its predecessor abele in speed and ability to generate more nuanced and varied exemplars alongside more insightful saliency maps and valuable counterexemplars.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
References
Barocas, S., Hardt, M., Narayanan, A.: Fairness and abstraction in sociotechnical systems. In: Conference on Fairness, Accountability, and Transparency (2019)
Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D., Rinzivillo, S.: Benchmarking and survey of explanation methods for black box models. Data Min. Knowl. Disc. 37, 1719–1778 (2023)
Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers (2017)
European Commission, H.L.E.G.o.A.I.: Ethics guidelines for trustworthy AI (2019)
Gomez, T., Fréour, T., Mouchère, H.: Metrics for saliency map evaluation of deep learning explanation methods. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds.) ICPRAI 2022. LNCS, vol. 13363, pp. 84–95. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09037-0_8
Guidotti, R., Monreale, A., Matwin, S., Pedreschi, D.: Black box explanation by learning image exemplars in the latent feature space. In: ECML/PKDD, vol. 11906, pp. 189–205 (2019)
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.: Local rule-based explanations of black box decision systems (2018)
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. Comput. Surv. 51(5) (2019)
Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)
Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.J.: Adversarial autoencoders. CoRR abs/1511.05644 (2015)
Metta, C., et al.: Improving trust and confidence in medical skin lesion diagnosis through explainable deep learning. Int. J. Data Sci. Anal. (2023)
Metta, C., Guidotti, R., Yin, Y., Gallinari, P., Rinzivillo, S.: Exemplars and counterexemplars explanations for image classifiers, targeting skin lesion labeling. In: IEEE ISCC (2021)
O’Neil, C.: Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown (2016)
Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: Explaining the predictions of any classifier. In: KDD, pp. 1135–1144. ACM (2016)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5) (2019)
van de Ven, G.M., Tuytelaars, T., Tolias, A.S.: Three types of incremental learning. Nat. Mach. Intell. 4 (2022)
Acknowledgements
Research partly funded by PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI”, funded by the European Commission under the NextGeneration EU programme, G.A. 871042 SoBigData++, G.A. 101092749 CREXDATA, ERC-2018-ADG G.A. 834756 XAI, “SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics” - Prot. IR0000013, G.A. 101120763 TANGO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Russo, F.M., Metta, C., Monreale, A., Rinzivillo, S., Pinelli, F. (2025). Explainable AI in Time-Sensitive Scenarios: Prefetched Offline Explanation Model. In: Pedreschi, D., Monreale, A., Guidotti, R., Pellungrini, R., Naretto, F. (eds) Discovery Science. DS 2024. Lecture Notes in Computer Science(), vol 15244. Springer, Cham. https://doi.org/10.1007/978-3-031-78980-9_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-78980-9_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-78979-3
Online ISBN: 978-3-031-78980-9
eBook Packages: Computer ScienceComputer Science (R0)