Skip to main content

FedGES: A Federated Learning Approach for Bayesian Network Structure Learning

  • Conference paper
  • First Online:
Discovery Science (DS 2024)

Abstract

Bayesian Network (BN) structure learning traditionally centralizes data, raising privacy concerns when data is distributed across multiple entities. This research introduces Federated GES (FedGES), a novel Federated Learning approach tailored for BN structure learning in decentralized settings using the Greedy Equivalence Search (GES) algorithm. FedGES uniquely addresses privacy and security challenges by exchanging only evolving network structures, not parameters or data. It performs collaborative model development, using structural fusion to combine the limited models generated by each client in successive iterations. A controlled structural fusion is also proposed to enhance client consensus when adding any edge. Experimental results on various BNs from bnlearn’s BN Repository validate the effectiveness of FedGES, particularly in high-dimensional (a large number of variables) and sparse data scenarios, offering a practical and privacy-preserving solution for real-world BN structure learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Horizontal partitioning divides data instances across clients, where each client possesses complete records but for different samples or segments. In contrast, vertical partitioning splits data attributes across clients, with each retaining all instances but only for specific attributes or features.

  2. 2.

    The minimal DAG \(\mathcal {G}^{\sigma }\) that being compatible with \(\sigma \) preserves as much as possible of the conditional independences in \(\mathcal {G}\), although the number of arcs considerably increases.

  3. 3.

    It is essential to highlight that, despite the terminology referring to structure learning of Causal Networks, in the three aforementioned contributions, we can use this term interchangeably with Bayesian Networks. This is attributed to their exploration of the space of Markov equivalence classes rather than the space of DAGs, highlighting their emphasis on equivalent causal structures.

  4. 4.

    We ran algorithms for which the source code is publicly available. NOTEARS-ADMM was not included in our tests, as previous works [19, 20] have demonstrated its inferior performance compared to the other methods we used to evaluate FedGES.

  5. 5.

    https://www.bnlearn.com/bnrepository/.

  6. 6.

    https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2.

  7. 7.

    https://github.com/wangzhaoyu07/FedC2SL.

  8. 8.

    https://www.openml.org/search?type=data&uploader_id=%3D_33148 &tags.tag=bnlearn.

  9. 9.

    https://github.com/ptorrijos99/BayesFL.

  10. 10.

    With five clients, C25 and Union fusion are equivalent (\(\lfloor 5 \cdot 0.25\rfloor = \lfloor 1.25\rfloor = 1\)), involving the addition of all edges present in the DAGs.

  11. 11.

    https://www.bnlearn.com/bnrepository/discrete-verylarge.html#pathfinder.

References

  1. Alonso, J.I., de la Ossa, L., Gámez, J.A., Puerta, J.M.: Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Int. J. Approximate Reasoning 54(4), 429–451 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  3. Borunda, M., Jaramillo, O., Reyes, A., Ibargüengoytia, P.H.: Bayesian networks in renewable energy systems: a bibliographical survey. Renew. Sustain. Energy Rev. 62, 32–45 (2016)

    Article  Google Scholar 

  4. de Campos, C.P., Ji, Q.: Efficient structure learning of bayesian networks using constraints. J. Mach. Learn. Res. 12, 663–689 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Chickering, D.M.: Optimal structure identification with greedy search. J. Mach. Learn. Res. 3, 507–554 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 5, 1287–1330 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Drury, B., Valverde-Rebaza, J., Moura, M.F., de Andrade Lopes, A.: A survey of the applications of Bayesian networks in agriculture. Eng. Appl. Artif. Intell. 65, 29–42 (2017)

    Article  MATH  Google Scholar 

  8. Gámez, J.A., Mateo, J.L., Puerta, J.M.: Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood. Data Min. Knowl. Disc. 22(1), 106–148 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995)

    Article  MATH  Google Scholar 

  10. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer, New York (2007)

    Book  MATH  Google Scholar 

  11. de Jongh, M., Druzdzel, M.J.: A comparison of structural distance measures for causal Bayesian network models. In: Klopotek, M., Przepiorkowski, A., Wierzchon, S.T., Trojanowski, K. (eds.) Recent Advances in Intelligent Information Systems, Challenging Problems of Science, Computer Science series, pp. 443 – 456. Academic Publishing House EXIT (2009)

    Google Scholar 

  12. Kim, G.H., Kim, S.H.: Marginal information for structure learning. Stat. Comput. 30(2), 331–349 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kyrimi, E., McLachlan, S., Dube, K., Neves, M.R., Fahmi, A., Fenton, N.: A comprehensive scoping review of Bayesian networks in healthcare: past, present and future. Artif. Intell. Med. 117, 102108 (2021)

    Article  Google Scholar 

  14. Laborda, J.D., Torrijos, P., Puerta, J.M., Gámez, J.A.: A ring-based distributed algorithm for learning high-dimensional Bayesian networks. In: Bouraoui, Z., Vesic, S. (eds.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pp. 123–135. Springer Nature Switzerland, Cham (2024)

    Chapter  MATH  Google Scholar 

  15. Laborda, J.D., Torrijos, P., Puerta, J.M., Gámez, J.A.: Parallel structural learning of Bayesian networks: iterative divide and conquer algorithm based on structural fusion. Knowl.-Based Syst. 296, 111840 (2024)

    Article  MATH  Google Scholar 

  16. Leroy, D., Coucke, A., Lavril, T., Gisselbrecht, T., Dureau, J.: Federated learning for keyword spotting. In: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2019)

    Google Scholar 

  17. Li, L., Fan, Y., Tse, M., Lin, K.Y.: A review of applications in federated learning. Comput. Ind. Eng. 149, 106854 (2020)

    Article  MATH  Google Scholar 

  18. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication-Efficient Learning of Deep Networks from Decentralized Data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  19. Mian, O., Kaltenpoth, D., Kamp, M.: Regret-based federated causal discovery. In: Le, T.D., Liu, L., Kıcıman, E., Triantafyllou, S., Liu, H. (eds.) Proceedings of The KDD 2022 Workshop on Causal Discovery. Proceedings of Machine Learning Research, vol. 185, pp. 61–69. PMLR (2022)

    Google Scholar 

  20. Mian, O., Kaltenpoth, D., Kamp, M., Vreeken, J.: Nothing but regrets - privacy-preserving federated causal discovery. In: Ruiz, F., Dy, J., van de Meent, J.W. (eds.) Proceedings of The 26th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 206, pp. 8263–8278. PMLR (2023)

    Google Scholar 

  21. Ng, I., Zhang, K.: Towards federated Bayesian network structure learning with continuous optimization. In: Camps-Valls, G., Ruiz, F.J.R., Valera, I. (eds.) Proceedings of The 25th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 151, pp. 8095–8111. PMLR (2022)

    Google Scholar 

  22. Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., Li, J., Vincent Poor, H.: Federated learning for internet of things: a comprehensive survey. IEEE Commun. Surv. Tutorials 23(3), 1622–1658 (2021)

    Article  Google Scholar 

  23. Peña, J.: Finding consensus Bayesian network structures. J. Artif. Intell. Res. (JAIR) 42 (2011)

    Google Scholar 

  24. Puerta, J.M., Aledo, J.A., Gámez, J.A., Laborda, J.D.: Efficient and accurate structural fusion of Bayesian networks. Inf. Fusion 66, 155–169 (2021)

    Article  MATH  Google Scholar 

  25. Rieke, N., et al.: The future of digital health with federated learning. NPJ Digital Med. 3(1) (2020)

    Google Scholar 

  26. Saputra, Y.M., et al.: Energy demand prediction with federated learning for electric vehicle networks. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE (2019)

    Google Scholar 

  27. Scanagatta, M., Salmerón, A., Stella, F.: A survey on Bayesian network structure learning from data. Prog. Artif. Intell. 8(4), 425–439 (2019)

    Article  MATH  Google Scholar 

  28. Scutari, M.: Learning Bayesian networks with the bnlearn R Package. J. Stat. Softw. 35(3), 1–22 (2010)

    Article  MATH  Google Scholar 

  29. Silva, S., et al.: Federated learning in distributed medical databases: meta-analysis of large-scale subcortical brain data. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE (2019)

    Google Scholar 

  30. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. The MIT Press (2001)

    Google Scholar 

  31. Wang, Z., Ma, P., Wang, S.: Towards practical federated causal structure learning, p. 351–367. Springer Nature Switzerland (2023)

    Google Scholar 

  32. Yang, W., et al.: FFD: A federated learning based method for credit card fraud detection, p. 18-32. Springer International Publishing (2019)

    Google Scholar 

  33. Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., Zhang, A.: A survey on causal inference. ACM Trans. Knowl. Discov. Data 15(5), 1–46 (2021)

    Article  MATH  Google Scholar 

  34. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated learning. Knowl. Based Syst. 216, 106775 (2021)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The following projects have funded this work: TED2021-131291B-I00 (MICIU/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR), SBPLY/21/180225/000062 (Junta de Comunidades de Castilla-La Mancha and ERDF A way of making Europe), PID2022-139293NB-C32 (MICIU/AEI/10.13039/501100011033 and ERDF, EU), FPU21/01074 (MICIU/AEI/10.13039/501100011033 and ESF+); 2022-GRIN-34437 (Universidad de Castilla-La Mancha and ERDF A way of making Europe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Torrijos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torrijos, P., Gámez, J.A., Puerta, J.M. (2025). FedGES: A Federated Learning Approach for Bayesian Network Structure Learning. In: Pedreschi, D., Monreale, A., Guidotti, R., Pellungrini, R., Naretto, F. (eds) Discovery Science. DS 2024. Lecture Notes in Computer Science(), vol 15244. Springer, Cham. https://doi.org/10.1007/978-3-031-78980-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78980-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78979-3

  • Online ISBN: 978-3-031-78980-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics