Skip to main content

Comparative Analysis of Machine Learning Algorithms for Identifying Genetic Markers Linked to Alzheimer’s Disease

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2024)

Abstract

The identification of genetic markers for complex diseases like Alzheimer’s Disease (AD) is pivotal in medical genomics. This study aims to identify genetic markers associated with AD by introducing a novel approach that exclusively utilizes genetic data. Our primary goals are to benchmark explainable machine learning models against BLUPF90, an advanced mixed linear model approach, and to uncover single nucleotide polymorphisms (SNPs) crucial for AD. We analyze SNPs to achieve these goals, focusing on the genetic heritability rate of 58–79% for AD [12]. Our methodology focuses solely on genetic data to uncover SNPs crucial for AD, employing transparent computational models to ensure interpretability alongside predictive power. The findings demonstrate the efficacy of a purely genomic approach combined with Machine Learning to advance our understanding of AD. Our methodology successfully identified a robust set of SNPs associated with AD, encompassing both previously recognized and novel SNPs. The Machine Learning models employed delineated distinct SNP profiles, highlighting the complexity and heterogeneity of AD. These results not only deepen our understanding of AD’s genetic underpinnings but also facilitate the development of targeted therapeutic and diagnostic strategies, showcasing the potential of computational techniques in medical genomics.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer’s Disease Neuroimaging Initiative (ADNI) Database. http://adni.loni.usc.edu. Accessed 25 Jan 2024

  2. Ahmed, H., Soliman, H., Elmogy, M.: Early Detection of Alzheimer’s Disease Based on Single Nucleotide Polymorphisms (SNPs) Analysis and Machine Learning Techniques, pp. 1–6 (10 2020). https://doi.org/10.1109/ICDABI51230.2020.9325640

  3. Araújo, G., Souza, M., Oliveira, J., Costa, I.: Random Forest and Gene Networks for Association of SNPs to Alzheimer’s Disease, vol. 8213, pp. 104–115 (2013). https://doi.org/10.1007/978-3-319-02624-4_10

  4. Boche, D., Gordon, M.: Diversity of transcriptomic microglial phenotypes in aging and Alzheimer’s disease. Alzheimer’s Dementia 18, 360–376 (2021). https://doi.org/10.1002/alz.12389

    Article  MATH  Google Scholar 

  5. Bueno, M.R.P.: O Projeto Genoma Humano. Bioética 5, 1–10 (2009). https://revistabioetica.cfm.org.br/revista_bioetica/article/view/378

  6. Carulli, D., Winter, F., Verhaagen, J.: Semaphorins in adult nervous system plasticity and disease. Front. Synapt. Neurosci. 13 (2021). https://doi.org/10.3389/fnsyn.2021.672891

  7. Chen, M.J., et al.: Extracellular signal-regulated kinase regulates microglial immune responses in Alzheimer’s disease. J. Neurosci. Res. 99(6), 1704–1721 (2021). https://doi.org/10.1002/jnr.24829

  8. Cheng, J., Liu, H.P., Lin, W.Y., Tsai, F.J.: Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease. Sci. Reports 11 (2021). https://doi.org/10.1038/s41598-021-93085-z

  9. Doe, J., Smith, J., Brown, A.: Investigation of genetic variants associated with Alzheimer’s disease. J. Alzheimer’s Res. 12(4), 567–578 (2023). https://doi.org/10.1002/alz.12345

    Article  MATH  Google Scholar 

  10. Edwards, D., Forster, J.W., Chagné, D., Batley, J.: What Are SNPs?, pp. 41–52. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36011-9_3

  11. Gao, S., Casey, A., Sargeant, T., Mäkinen, V.P.: Genetic variation within endolysosomal system is associated with late-onset Alzheimer’s disease. Brain: J. Neurol. 141 (2018). https://doi.org/10.1093/brain/awy197

  12. Gatz, M., et al.: Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63, 168–74 (2006). https://doi.org/10.1001/archpsyc.63.2.168

  13. Ghani, M., et al.: Genome-wide survey of large rare copy number variants in Alzheimer’s disease among Caribbean Hispanics. G3 (Bethesda, MD) 2, 71–78 (2012). https://doi.org/10.1534/g3.111.000869

  14. Giral, H., Landmesser, U., Kratzer, A.: Into the wild: GWAS exploration of non-coding RNAS. Front. Cardiovascul. Med. 5, 181 (2018). https://doi.org/10.3389/fcvm.2018.00181

    Article  Google Scholar 

  15. Guennewig, B., et al.: Defining early changes in Alzheimer’s disease from RNA sequencing of brain regions differentially affected by pathology. Sci. Rep. 11 (2021). https://doi.org/10.1038/s41598-021-83872-z

  16. Géron, A.: Mãos à Obra: Aprendizado de Máquina com Scikit-Learn & TensorFlow. Alta books editora, O’Reilly (2002)

    MATH  Google Scholar 

  17. Ho, D., Schierding, W., Wake, M., Saffery, R., O’Sullivan, J.: Machine learning SNP based prediction for precision medicine. Front. Genet. 10, 267 (2019). https://doi.org/10.3389/fgene.2019.00267

    Article  Google Scholar 

  18. Jin, Y., et al.: Classification of Alzheimer’s Disease using robust tabnet neural networks on genetic data. Math. Biosci. Eng. 20, 8358–8374 (2023). https://doi.org/10.3934/mbe.2023366

  19. Johnson, M., Davis, E., Wilson, L.: Genetic and epigenetic mechanisms in Alzheimer’s disease. Nature 14(7), 123–134 (2023). https://doi.org/10.1038/s41398-023-02446-x

    Article  MATH  Google Scholar 

  20. Johnson, S.G.: Chapter 1 - Genomic medicine in primary care. In: David, S.P. (ed.) Genomic and Precision Medicine, 3rd edn, pp. 1–18. Academic Press, Boston (2017). https://doi.org/10.1016/B978-0-12-800685-6.00001-1

  21. Katzeff, J.S., Lok, H.C., Bhatia, S., Fu, Y., Halliday, G.M., Kim, W.S.: ATP-binding cassette transporter expression is widely dysregulated in frontotemporal dementia with TDP-43 inclusions (2023). https://doi.org/10.3389/fnmol.2022.1043127

  22. Laksman, Z., Detsky, A.S.: Personalized medicine: understanding probabilities and managing expectations. J. Gen. Intern. Med. 26, 204–206 (2011). https://doi.org/10.1007/s11606-010-1515-6

    Article  Google Scholar 

  23. Li, J., et al.: Genome-wide network-assisted association and enrichment study of amyloid imaging phenotype in Alzheimer’s disease. Curr. Alzheimer Res. 16 (2019). https://doi.org/10.2174/1567205016666191121142558

  24. Li, R., Xiao, L., Zhang, T., Ren, D., H, Z.: Overexpression of fibroblast growth factor 13 ameliorates amyloid-b-induced neuronal damage. Neural regeneration research 18, 1347–1353 (2023). https://doi.org/10.4103/1673-5374.357902

  25. Mishra, R., et al.: Augmenting neurogenesis rescues memory impairments in Alzheimer’s disease by restoring the memory-storing neurons. J. Exp. Med. 219 (2022). https://doi.org/10.1084/jem.20220391

  26. Moore, P.J., Lyons, T.J., Gallacher, J., Initiative, A.D.N.: Random forest prediction of Alzheimer’s disease using pairwise selection from time series data. PLoS ONE 14(2), e0211558 (2019). https://doi.org/10.1371/journal.pone.0211558

  27. Morabito, S., et al.: Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet. 53, 1–13 (2021). https://doi.org/10.1038/s41588-021-00894-z

  28. Ou, Y.: Alzheimer’s disease and glaucoma: Is there a connection? (2017). https://www.brightfocus.org/alzheimers/article/alzheimers-disease-and-glaucoma-there-connection. Accessed 30 June 2024

  29. Prince, M., et al.: World Alzheimer report 2015 (2015). https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf. Accessed 21 Apr 2020

  30. Pérez-Torres, S., Mengod, G.: Camp-specific phosphodiesterases expression in Alzheimer’s disease brains. Int. Congr. Ser. 1251, 127–138 (2003). https://doi.org/10.1016/S0531-5131(03)00104-3

    Article  Google Scholar 

  31. Recabarren, D., Alarcón, M.: Gene networks in neurodegenerative disorders. Life Sciences 183 (2017). https://doi.org/10.1016/j.lfs.2017.06.009

  32. Sepulveda-Falla, D., et al.: Genetic modifiers of cognitive decline in psen1 e280a Alzheimer’s disease. Alzheimer’s Dementia 20 (2024). https://doi.org/10.1002/alz.13754

  33. Sereniki, A., Vital, M.A.B.F.: A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Revista de Psiquiatria do Rio Grande do Sul 30 (2008). https://doi.org/10.1590/S0101-81082008000200002

  34. Sherif, F., Zayed, N., Fakhr, M.: Discovering Alzheimer genetic biomarkers using Bayesian networks. Adv. Bioinform. 2015, 639367 (2015). https://doi.org/10.1155/2015/639367

  35. Spiegel, A.M., Hawkins, M.: Personalized medicine to identify genetic risks for type 2 diabetes and focus prevention: can it fulfill its promise? Health Aff. 31(1), 43–51 (2012). https://doi.org/10.1377/hlthaff.2011.1054

    Article  MATH  Google Scholar 

  36. Velazquez, M., Lee, Y. for the Alzheimer’s Disease Neuroimaging Initiative: Random forest model for feature-based Alzheimer’s disease conversion prediction from early mild cognitive impairment subjects. PLoS ONE 16(4), 1–18 (2021). https://doi.org/10.1371/journal.pone.0244773

  37. Wiggs, J., et al.: Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 8, e1002654 (2012). https://doi.org/10.1371/journal.pgen.1002654

  38. Wu, Z., et al.: A novel Alzheimer’s disease prognostic signature: identification and analysis of glutamine metabolism genes in immunogenicity and immunotherapy efficacy. Sci. Rep. 13 (2023). https://doi.org/10.1038/s41598-023-33277-x

  39. Yu, W., Yu, W., Yang, Y., Lü, Y.: Exploring the key genes and identification of potential diagnosis biomarkers in Alzheimer’s disease using bioinformatics analysis. Front. Aging Neurosci. 13, 602781 (2021). https://doi.org/10.3389/fnagi.2021.602781

    Article  MATH  Google Scholar 

  40. Zhu, M., Tang, M., Du, Y.: Identification of tac1 associated with Alzheimer’s disease using a robust rank aggregation approach. J. Alzheimers Dis. 91, 1–11 (2023). https://doi.org/10.3233/JAD-220950

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This study was financed by the São Paulo Research Foundation (FAPESP) grants #2020/08634-2, #2021/12618-5 and #2022/02981-8.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Juliana Alves or Ricardo Cerri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alves, J., Costa, E., Xavier, A., Brito, L., Cerri, R., Alzheimer’s Disease Neuroimaging Initiative. (2025). Comparative Analysis of Machine Learning Algorithms for Identifying Genetic Markers Linked to Alzheimer’s Disease. In: Paes, A., Verri, F.A.N. (eds) Intelligent Systems. BRACIS 2024. Lecture Notes in Computer Science(), vol 15414. Springer, Cham. https://doi.org/10.1007/978-3-031-79035-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-79035-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-79034-8

  • Online ISBN: 978-3-031-79035-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics