Abstract
The identification of genetic markers for complex diseases like Alzheimer’s Disease (AD) is pivotal in medical genomics. This study aims to identify genetic markers associated with AD by introducing a novel approach that exclusively utilizes genetic data. Our primary goals are to benchmark explainable machine learning models against BLUPF90, an advanced mixed linear model approach, and to uncover single nucleotide polymorphisms (SNPs) crucial for AD. We analyze SNPs to achieve these goals, focusing on the genetic heritability rate of 58–79% for AD [12]. Our methodology focuses solely on genetic data to uncover SNPs crucial for AD, employing transparent computational models to ensure interpretability alongside predictive power. The findings demonstrate the efficacy of a purely genomic approach combined with Machine Learning to advance our understanding of AD. Our methodology successfully identified a robust set of SNPs associated with AD, encompassing both previously recognized and novel SNPs. The Machine Learning models employed delineated distinct SNP profiles, highlighting the complexity and heterogeneity of AD. These results not only deepen our understanding of AD’s genetic underpinnings but also facilitate the development of targeted therapeutic and diagnostic strategies, showcasing the potential of computational techniques in medical genomics.
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alzheimer’s Disease Neuroimaging Initiative (ADNI) Database. http://adni.loni.usc.edu. Accessed 25 Jan 2024
Ahmed, H., Soliman, H., Elmogy, M.: Early Detection of Alzheimer’s Disease Based on Single Nucleotide Polymorphisms (SNPs) Analysis and Machine Learning Techniques, pp. 1–6 (10 2020). https://doi.org/10.1109/ICDABI51230.2020.9325640
Araújo, G., Souza, M., Oliveira, J., Costa, I.: Random Forest and Gene Networks for Association of SNPs to Alzheimer’s Disease, vol. 8213, pp. 104–115 (2013). https://doi.org/10.1007/978-3-319-02624-4_10
Boche, D., Gordon, M.: Diversity of transcriptomic microglial phenotypes in aging and Alzheimer’s disease. Alzheimer’s Dementia 18, 360–376 (2021). https://doi.org/10.1002/alz.12389
Bueno, M.R.P.: O Projeto Genoma Humano. Bioética 5, 1–10 (2009). https://revistabioetica.cfm.org.br/revista_bioetica/article/view/378
Carulli, D., Winter, F., Verhaagen, J.: Semaphorins in adult nervous system plasticity and disease. Front. Synapt. Neurosci. 13 (2021). https://doi.org/10.3389/fnsyn.2021.672891
Chen, M.J., et al.: Extracellular signal-regulated kinase regulates microglial immune responses in Alzheimer’s disease. J. Neurosci. Res. 99(6), 1704–1721 (2021). https://doi.org/10.1002/jnr.24829
Cheng, J., Liu, H.P., Lin, W.Y., Tsai, F.J.: Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer’s disease. Sci. Reports 11 (2021). https://doi.org/10.1038/s41598-021-93085-z
Doe, J., Smith, J., Brown, A.: Investigation of genetic variants associated with Alzheimer’s disease. J. Alzheimer’s Res. 12(4), 567–578 (2023). https://doi.org/10.1002/alz.12345
Edwards, D., Forster, J.W., Chagné, D., Batley, J.: What Are SNPs?, pp. 41–52. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36011-9_3
Gao, S., Casey, A., Sargeant, T., Mäkinen, V.P.: Genetic variation within endolysosomal system is associated with late-onset Alzheimer’s disease. Brain: J. Neurol. 141 (2018). https://doi.org/10.1093/brain/awy197
Gatz, M., et al.: Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 63, 168–74 (2006). https://doi.org/10.1001/archpsyc.63.2.168
Ghani, M., et al.: Genome-wide survey of large rare copy number variants in Alzheimer’s disease among Caribbean Hispanics. G3 (Bethesda, MD) 2, 71–78 (2012). https://doi.org/10.1534/g3.111.000869
Giral, H., Landmesser, U., Kratzer, A.: Into the wild: GWAS exploration of non-coding RNAS. Front. Cardiovascul. Med. 5, 181 (2018). https://doi.org/10.3389/fcvm.2018.00181
Guennewig, B., et al.: Defining early changes in Alzheimer’s disease from RNA sequencing of brain regions differentially affected by pathology. Sci. Rep. 11 (2021). https://doi.org/10.1038/s41598-021-83872-z
Géron, A.: Mãos à Obra: Aprendizado de Máquina com Scikit-Learn & TensorFlow. Alta books editora, O’Reilly (2002)
Ho, D., Schierding, W., Wake, M., Saffery, R., O’Sullivan, J.: Machine learning SNP based prediction for precision medicine. Front. Genet. 10, 267 (2019). https://doi.org/10.3389/fgene.2019.00267
Jin, Y., et al.: Classification of Alzheimer’s Disease using robust tabnet neural networks on genetic data. Math. Biosci. Eng. 20, 8358–8374 (2023). https://doi.org/10.3934/mbe.2023366
Johnson, M., Davis, E., Wilson, L.: Genetic and epigenetic mechanisms in Alzheimer’s disease. Nature 14(7), 123–134 (2023). https://doi.org/10.1038/s41398-023-02446-x
Johnson, S.G.: Chapter 1 - Genomic medicine in primary care. In: David, S.P. (ed.) Genomic and Precision Medicine, 3rd edn, pp. 1–18. Academic Press, Boston (2017). https://doi.org/10.1016/B978-0-12-800685-6.00001-1
Katzeff, J.S., Lok, H.C., Bhatia, S., Fu, Y., Halliday, G.M., Kim, W.S.: ATP-binding cassette transporter expression is widely dysregulated in frontotemporal dementia with TDP-43 inclusions (2023). https://doi.org/10.3389/fnmol.2022.1043127
Laksman, Z., Detsky, A.S.: Personalized medicine: understanding probabilities and managing expectations. J. Gen. Intern. Med. 26, 204–206 (2011). https://doi.org/10.1007/s11606-010-1515-6
Li, J., et al.: Genome-wide network-assisted association and enrichment study of amyloid imaging phenotype in Alzheimer’s disease. Curr. Alzheimer Res. 16 (2019). https://doi.org/10.2174/1567205016666191121142558
Li, R., Xiao, L., Zhang, T., Ren, D., H, Z.: Overexpression of fibroblast growth factor 13 ameliorates amyloid-b-induced neuronal damage. Neural regeneration research 18, 1347–1353 (2023). https://doi.org/10.4103/1673-5374.357902
Mishra, R., et al.: Augmenting neurogenesis rescues memory impairments in Alzheimer’s disease by restoring the memory-storing neurons. J. Exp. Med. 219 (2022). https://doi.org/10.1084/jem.20220391
Moore, P.J., Lyons, T.J., Gallacher, J., Initiative, A.D.N.: Random forest prediction of Alzheimer’s disease using pairwise selection from time series data. PLoS ONE 14(2), e0211558 (2019). https://doi.org/10.1371/journal.pone.0211558
Morabito, S., et al.: Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet. 53, 1–13 (2021). https://doi.org/10.1038/s41588-021-00894-z
Ou, Y.: Alzheimer’s disease and glaucoma: Is there a connection? (2017). https://www.brightfocus.org/alzheimers/article/alzheimers-disease-and-glaucoma-there-connection. Accessed 30 June 2024
Prince, M., et al.: World Alzheimer report 2015 (2015). https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf. Accessed 21 Apr 2020
Pérez-Torres, S., Mengod, G.: Camp-specific phosphodiesterases expression in Alzheimer’s disease brains. Int. Congr. Ser. 1251, 127–138 (2003). https://doi.org/10.1016/S0531-5131(03)00104-3
Recabarren, D., Alarcón, M.: Gene networks in neurodegenerative disorders. Life Sciences 183 (2017). https://doi.org/10.1016/j.lfs.2017.06.009
Sepulveda-Falla, D., et al.: Genetic modifiers of cognitive decline in psen1 e280a Alzheimer’s disease. Alzheimer’s Dementia 20 (2024). https://doi.org/10.1002/alz.13754
Sereniki, A., Vital, M.A.B.F.: A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Revista de Psiquiatria do Rio Grande do Sul 30 (2008). https://doi.org/10.1590/S0101-81082008000200002
Sherif, F., Zayed, N., Fakhr, M.: Discovering Alzheimer genetic biomarkers using Bayesian networks. Adv. Bioinform. 2015, 639367 (2015). https://doi.org/10.1155/2015/639367
Spiegel, A.M., Hawkins, M.: Personalized medicine to identify genetic risks for type 2 diabetes and focus prevention: can it fulfill its promise? Health Aff. 31(1), 43–51 (2012). https://doi.org/10.1377/hlthaff.2011.1054
Velazquez, M., Lee, Y. for the Alzheimer’s Disease Neuroimaging Initiative: Random forest model for feature-based Alzheimer’s disease conversion prediction from early mild cognitive impairment subjects. PLoS ONE 16(4), 1–18 (2021). https://doi.org/10.1371/journal.pone.0244773
Wiggs, J., et al.: Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet. 8, e1002654 (2012). https://doi.org/10.1371/journal.pgen.1002654
Wu, Z., et al.: A novel Alzheimer’s disease prognostic signature: identification and analysis of glutamine metabolism genes in immunogenicity and immunotherapy efficacy. Sci. Rep. 13 (2023). https://doi.org/10.1038/s41598-023-33277-x
Yu, W., Yu, W., Yang, Y., Lü, Y.: Exploring the key genes and identification of potential diagnosis biomarkers in Alzheimer’s disease using bioinformatics analysis. Front. Aging Neurosci. 13, 602781 (2021). https://doi.org/10.3389/fnagi.2021.602781
Zhu, M., Tang, M., Du, Y.: Identification of tac1 associated with Alzheimer’s disease using a robust rank aggregation approach. J. Alzheimers Dis. 91, 1–11 (2023). https://doi.org/10.3233/JAD-220950
Acknowledgment
This study was financed by the São Paulo Research Foundation (FAPESP) grants #2020/08634-2, #2021/12618-5 and #2022/02981-8.
Author information
Authors and Affiliations
Consortia
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alves, J., Costa, E., Xavier, A., Brito, L., Cerri, R., Alzheimer’s Disease Neuroimaging Initiative. (2025). Comparative Analysis of Machine Learning Algorithms for Identifying Genetic Markers Linked to Alzheimer’s Disease. In: Paes, A., Verri, F.A.N. (eds) Intelligent Systems. BRACIS 2024. Lecture Notes in Computer Science(), vol 15414. Springer, Cham. https://doi.org/10.1007/978-3-031-79035-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-79035-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-79034-8
Online ISBN: 978-3-031-79035-5
eBook Packages: Computer ScienceComputer Science (R0)