Skip to main content

One-Class Learning for Data Stream Through Graph Neural Networks

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2024)

Abstract

In many data stream applications, there is a normal concept, and the objective is to identify normal and abnormal concepts by training only with normal concept instances. This scenario is known in the literature as one-class learning (OCL) for data streams. In this OCL scenario for data streams, we highlight two main gaps: (i) lack of methods based on graph neural networks (GNNs) and (ii) lack of interpretable methods. We introduce OPENCAST (One-class graPh autoENCoder for dAta STream), a new method for data streams based on OCL and GNNs. Our method learns representations while encapsulating the instances of interest through a hypersphere. OPENCAST learns low-dimensional representations to generate interpretability in the representation learning process. OPENCAST achieved state-of-the-art results for data streams in the OCL scenario, outperforming seven other methods. Furthermore, OPENCAST learns low-dimensional representations, generating interpretability in the representation learning process and results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    OCL is also called one-class classification in the literature, but this work chose to use the term OCL.

  2. 2.

    https://github.com/GoloMarcos/OPENCAST.

  3. 3.

    https://riverml.xyz/0.14.0/api/datasets/synth/Agrawal/.

  4. 4.

    https://github.com/marouabahri/CS-ARF/tree/master/datasets/.

  5. 5.

    https://archive.ics.uci.edu/dataset/222/bank+marketing.

  6. 6.

    https://github.com/amidst/code-examples/blob/master/datasets/DriftSets/.

  7. 7.

    Other methods based on OCSVM, IForest and LOF (methods presented in the Related Work section) do not share the source code or the link to the source code is broken or the code is not in python which was the language used in this work.

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)

    Article  MATH  Google Scholar 

  2. Bifet, A., et al.: MOA: massive online analysis, a framework for stream classification and clustering. In: Proceedings of the First Workshop on Applications of Pattern Analysis. PMLR (2010)

    Google Scholar 

  3. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph convolutional networks. In: Proceedings of the Conference of AAAI (2021)

    Google Scholar 

  4. Cai, L., et al.: Structural temporal graph neural networks for anomaly detection in dynamic graphs. In: Proceedings of the International Conference on Information and Knowledge Management (2021)

    Google Scholar 

  5. Corso, G., Stark, H., Jegelka, S., Jaakkola, T., Barzilay, R.: Graph neural networks. Nat. Rev. Methods Primers 4(1), 17 (2024)

    Article  MATH  Google Scholar 

  6. de Faria, E.R., Ponce de Leon Ferreira Carvalho, A.C., Gama, J.: Minas: multiclass learning algorithm for novelty detection in data streams. Data mining and knowledge discovery 30, 640–680 (2016)

    Google Scholar 

  7. Feng, Y., Chen, J., Liu, Z., Lv, H., Wang, J.: Full graph autoencoder for one-class group anomaly detection of IIOT system. Internet Things J. 9(21) (2022)

    Google Scholar 

  8. Gama, J., Sebastiao, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90, 317–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaudreault, J.G., Branco, P.: A systematic literature review of novelty detection in data streams: challenges and opportunities. ACM Comput. Surv. (2024)

    Google Scholar 

  10. Gôlo, M.P.S., De Moraes, M.I., Goularte, R., Marcacini, R.M.: On the use of early fusion operators on heterogeneous graph neural networks for one-class learning. In: Proceedings of the Brazilian Symposium on Multimedia and the Web, pp. 128–136 (2023)

    Google Scholar 

  11. Gôlo, M.P.S., Junior, J.G.B.M., Silva, D.F., Marcacini, R.M.: Olga: one-class graph autoencoder. arXiv preprint arXiv:2406.09131 (2024)

  12. Haug, J., Broelemann, K., Kasneci, G.: Dynamic model tree for interpretable data stream learning. In: International Conference on Data Engineering. IEEE (2022)

    Google Scholar 

  13. Jin, G., et al.: Spatio-temporal graph neural networks for predictive learning in urban computing: a survey. IEEE Trans. Knowl. Data Eng. (2023)

    Google Scholar 

  14. Jodelka, O., Anagnostopoulos, C., Kolomvatsos, K.: Adaptive novelty detection over contextual data streams at the edge using one-class classification. In: International Conference on Information and Communication Systems. IEEE (2021)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Variational graph auto-encoders. Stat 1050, 21 (2016)

    MATH  Google Scholar 

  16. Luan, S., et al.: Revisiting heterophily for graph neural networks. Adv. Neural. Inf. Process. Syst. 35, 1362–1375 (2022)

    Google Scholar 

  17. Ma, Y., Guo, Z., Ren, Z., Tang, J., Yin, D.: Streaming graph neural networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 719–728 (2020)

    Google Scholar 

  18. Mendelson, S., Lerner, B.: Online cluster drift detection for novelty detection in data streams. In: International Conference on Machine Learning and Applications. IEEE (2020)

    Google Scholar 

  19. Moro, S., Rita, P., Cortez, P.: Bank Marketing. UCI Repository (2012)

    Google Scholar 

  20. Na, G.S., Kim, D., Yu, H.: Dilof: effective and memory efficient local outlier detection in data streams. In: Proceedings of Knowledge Discovery and Data Mining (2018)

    Google Scholar 

  21. Onuki, E.K.T., Malucelli, A., Barddal, J.P.: A tool for measuring energy consumption in data stream mining. In: BR Conference on Intelligent Systems. Springer (2023)

    Google Scholar 

  22. Peng, X., Li, Y., Tsang, I.W., Zhu, H., Lv, J., Zhou, J.T.: Xai beyond classification: interpretable neural clustering. J. Mach. Learn. Res. (2022)

    Google Scholar 

  23. Pitonakova, L., Bullock, S.: The robustness-fidelity trade-off in grow when required neural networks performing continuous novelty detection. Neural Networks (2020)

    Google Scholar 

  24. Puerto-Santana, C., et al.: Asymmetric HMMs for online ball-bearing health assessments. Internet Things J. 9(20), 20160–20177 (2022)

    Google Scholar 

  25. de Souza, M.C., Nogueira, B.M., Rossi, R.G., Marcacini, R.M., Rezende, S.O.: A heterogeneous network-based positive and unlabeled learning approach to detect fake news. In: Brazilian Conference on Intelligent Systems. Springer (2021)

    Google Scholar 

  26. Spinosa, E.J., de Leon F. de Carvalho, A.P., Gama, J.: Olindda: a cluster-based approach for detecting novelty and concept drift in data streams. In: Proceedings of the 2007 ACM Symposium on Applied Computing, pp. 448–452 (2007)

    Google Scholar 

  27. Tang, J., Liao, R.: Graph neural networks for node classification. In: Graph Neural Networks: Foundations, Frontiers, and Applications, pp. 41–61 (2022)

    Google Scholar 

  28. Togbe, M.U., et al.: Anomaly detection for data streams based on isolation forest using Scikit-Multiflow. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 15–30. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_2

  29. Veloso, B., Gama, J., Malheiro, B., Vinagre, J.: Hyperparameter self-tuning for data streams. Inf. Fusion 76, 75–86 (2021)

    Article  MATH  Google Scholar 

  30. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33(18), 12073–12085 (2021). https://doi.org/10.1007/s00521-021-05924-9

    Article  MATH  Google Scholar 

  31. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: Proceedings of the International Conference on Learning Representations. Open Review (2019)

    Google Scholar 

  32. Zhang, F., Fan, H., Wang, R., Li, Z., Liang, T.: Deep dual support vector data description for anomaly detection on attributed networks. Int. J. Intell. Syst. 37(2), 1509–1528 (2022)

    Article  MATH  Google Scholar 

  33. Zheng, Y., Yi, L., Wei, Z.: A survey of dynamic graph neural networks. arXiv preprint arXiv:2404.18211 (2024)

Download references

Acknowledgments

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) grant number 88887.671481/2022-00. Also, this work was supported by LatAm Google Ph.D. Fellowship. Finally, we would like to thank Google Tutor Mara Finkelstein for reviewing the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Paulo Silva Gôlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva Gôlo, M.P., Gama, J., Marcondes Marcacini, R. (2025). One-Class Learning for Data Stream Through Graph Neural Networks. In: Paes, A., Verri, F.A.N. (eds) Intelligent Systems. BRACIS 2024. Lecture Notes in Computer Science(), vol 15415. Springer, Cham. https://doi.org/10.1007/978-3-031-79038-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-79038-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-79037-9

  • Online ISBN: 978-3-031-79038-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics