Skip to main content

Privacy-Preservation for Federated Learning: Survey and Future Directions

  • Conference paper
  • First Online:
Computing, Communication and Learning (CoCoLe 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2317))

Included in the following conference series:

  • 14 Accesses

Abstract

Federated learning (FL) is a decentralized machine learning approach where devices train models on their data without directly sharing it. This ensures privacy by transmitting only encrypted updates of the model to a central server for aggregation. FL offers advantages like stronger privacy, lower communication costs, and working with diverse data sources. However, FL can still be vulnerable to attacks compromising privacy, disrupting model performance, or weakening system security. Researchers are developing methods to address these security and privacy concerns. This survey explores current FL techniques and known security and privacy issues with their mitigation strategies. Finally, it highlights the challenges and future directions for ensuring user privacy and model effectiveness, which is essential for the broader adoption of FL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuze, N., et al.: Classification of diversified web crawler accesses inspired by biological adaptation. Int. J. Bio-Inspir. Comput. 17(3), 165ā€“173 (2021). https://doi.org/10.1504/IJBIC.2021.114877, https://www.inderscienceonline.com

  2. Yang, T., et al.: Applied federated learning: improving google keyboard query suggestions (2018)

    Google Scholar 

  3. Yang, Q., et al.: Federated learning: challenges, methods, and future directions. In: IEEE International Conference on Pervasive Computing and Communications (PerCom) (2019). https://ieeexplore.ieee.org/document/8767345

  4. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  5. Bonawitz, K., et al.: Towards federated learning at scale: system design. In: Proceedings of the 2nd SysML Conference (2019). https://arxiv.org/abs/1902.01046

  6. KonečnĆ½, J., et al.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  7. McMahan, H.B., et al.: Generalizing federated learning to handle concept drift. arXiv preprint arXiv:1806.03399 (2018)

  8. Smith, V., et al.: Federated multi-task learning. arXiv preprint arXiv:1705.10467 (2017)

  9. Khan, L.U., et al.: Federated learning for internet of things: recent advances, taxonomy, and open challenges. IEEE Commun. Surv. Tutor. 23(3), 1759ā€“1799 (2021). https://doi.org/10.1109/COMST.2021.3090430

    Article  MathSciNet  MATH  Google Scholar 

  10. Ali, M., et al.: Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey (2022)

    Google Scholar 

  11. Lyu, L., et al.: Privacy and robustness in federated learning: attacks and defenses (2022)

    Google Scholar 

  12. Rao, B., et al.: Privacy inference attack and defense in centralized and federated learning: a comprehensive survey. IEEE Trans. Artif. Intell. 1ā€“22 (2024). https://doi.org/10.1109/TAI.2024.3363670

  13. Mengistu, T.M., Kim, T., Lin, J.-W.: A survey on heterogeneity taxonomy, security and privacy preservation in the integration of IoT, wireless sensor networks and federated learning. Sensors 24(3) (2024). https://doi.org/10.3390/s24030968, https://www.mdpi.com/1424-8220/24/3/968. ISSN 1424-8220

  14. Hallaji, E., et al.: Decentralized federated learning: a survey on security and privacy. IEEE Trans. Big Data 10(2), 194ā€“213 (2024). https://doi.org/10.1109/tbdata.2024.3362191. ISSN 2372-2096

  15. Sikandar, H.S., et al.: A detailed survey on federated learning attacks and defenses. Electronics 12(2) (2023). https://doi.org/10.3390/electronics12020260, https://www.mdpi.com/2079-9292/12/2/260. ISSN 2079-9292

  16. Cunha Neto, H.N., et al.: A survey on securing federated learning: analysis of applications, attacks, challenges, and trends. IEEE Access 11, 41928ā€“41953 (2023). https://doi.org/10.1109/ACCESS.2023.3269980

    Article  Google Scholar 

  17. Rafi, T.H., et al.: Fairness and privacy preserving in federated learning: a survey. Inf. Fusion 105, 102198 (2023). https://doi.org/10.1016/j.inffus.2023.102198, https://www.sciencedirect.com/science/article/pii/S1566253523005146. ISSN 1566-2535

  18. McMahan, H.B., et al.: Federated learning: collaborative machine learning without centralized training data. Google AI Blog 12, 89 (2017). https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

  19. McMahan, H.B., et al.: Federated learning of deep networks using model averaging. arXiv preprint arXiv:1602.05629, vol. 2, p. 2 (2016)

  20. Yang, S., et al.: Parallel distributed logistic regression for vertical federated learning without third-party coordinator. arXiv: 1911.09824 (2019)

  21. Saha, S., Ahmad, T.: Federated transfer learning: concept and applications (2021)

    Google Scholar 

  22. Mothukuri, V., et al.: A survey on security and privacy of federated learning. Future Gener. Comput. Syst. 115, 619ā€“640 (2021). https://doi.org/10.1016/j.future.2020.10.007, https://www.sciencedirect.com/science/article/pii/S0167739X20329848. ISSN 0167-739X

  23. Zhang, J., et al.: Security and privacy threats to federated learning: issues, methods, and challenges. Secur. Commun. Netw. 2022, 2886795 (2022). https://doi.org/10.1155/2022/2886795. ISSN 1939-0114

  24. Li, T., et al.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50ā€“60 (2020)

    Article  MATH  Google Scholar 

  25. Li, Y., et al.: Privacy-preserving federated learning framework based on chained secure multiparty computing. IEEE Internet Things J. 8(8), 6178ā€“6186 (2021). https://doi.org/10.1109/JIOT.2020.3022911

    Article  MATH  Google Scholar 

  26. Chang, Y., et al.: Privacy-preserving federated learning via functional encryption, revisited. IEEE Trans. Inf. Forensics Secur. 18, 1855ā€“1869 (2023). https://doi.org/10.1109/TIFS.2023.3255171

    Article  MATH  Google Scholar 

  27. Pentina, A., Lampert, C.H., Meinshausen, N.: Multi-task learning with labeled and unlabeled tasks. arXiv preprint arXiv:1809.08370 (2018)

  28. Farooq, M.J., Kim, H., Jeon, G.: Federated learning for privacy preservation in smart healthcare systems: a comprehensive survey. IEEE Access 9, 22267ā€“22289 (2021)

    MATH  Google Scholar 

  29. Bouacida, N., Mohapatra, P.: Vulnerabilities in federated learning. IEEE Access 9, 63229ā€“63249 (2021). https://doi.org/10.1109/ACCESS.2021.3075203

    Article  MATH  Google Scholar 

  30. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, New York, NY, USA, pp. 1175ā€“1191. Association for Computing Machinery (2017). https://doi.org/10.1145/3133956.3133982. ISBN 9781450349468

  31. Melis, L., et al.: Exploiting unintended feature leakage in collaborative learning. arXiv preprint arXiv:1805.04049 (2019)

  32. Chen, W., et al.: Federated meta-learning for recommendation. arXiv preprint arXiv:1909.11825 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Gautam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saraswat, D., Mali, T., Verma, A., Gautam, S. (2025). Privacy-Preservation for Federated Learning: Survey and Future Directions. In: Panda, S.K., et al. Computing, Communication and Learning. CoCoLe 2024. Communications in Computer and Information Science, vol 2317. Springer, Cham. https://doi.org/10.1007/978-3-031-79041-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-79041-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-79040-9

  • Online ISBN: 978-3-031-79041-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics