Abstract
Log management and application health monitoring practices are cumbersome and often still require significant human intervention to prevent inaccurate data and information. Existing technologies like Elasticsearch and Grafana offer opportunities to automate and improve these practices. This paper reports on a design solution aimed at enhancing log categorization, anomaly detection, and real-time application health reporting for CAPE Groep’s service application. The proposed solution leverages Elasticsearch’s Machine Learning capabilities and Grafana’s dynamic visualization tools, alongside a newly developed dashboard named Horus, to centralize log data and automate monitoring processes. Preliminary results indicate that the proposed solution significantly improves the accuracy and timeliness of health reports, reduces manual intervention, and provides comprehensive real-time insights into application performance. This paper outlines the requirements, architectural design, and phased implementation plan, demonstrating the potential to streamline operations, enhance service delivery, and support future more stringent scalability requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
- 3.
- 4.
Out-of-vocabulary (OOV) words refer to words that appear in a text but were not included in the training set vocabulary when a language model or a word embedding system, like Word2Vec, was initially trained.
References
Ali, S., Boufaied, C., Bianculli, D., Branco, P., Briand, L.C., Aschbacher, N.: An empirical study on log-based anomaly detection using machine learning. ArXiv abs/2307.16714 (2023). https://api.semanticscholar.org/CorpusID:260334470
Bertero, C., Roy, M., Sauvanaud, C., Tredan, G.: Experience report: log mining using natural language processing and application to anomaly detection. In: 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), pp. 351–360 (2017). https://doi.org/10.1109/ISSRE.2017.43
Białecki, A., Muir, R., Ingersoll, G.: Apache Lucene 4 (2012)
Cândido, J., Aniche, M., van Deursen, A.: Log-based software monitoring: a systematic mapping study. PeerJ Comput. Sci. 7, e489 (2021). https://doi.org/10.7717/peerj-cs.489
CAPE Groep: Mendix Marketplace - LogTransporter (2024). https://marketplace.mendix.com/link/component/218262
Courcy, D.: Elastic 7.16: Streamlined data integrations drive results that matter (2021). https://www.elastic.co/blog/whats-new-elastic-7-16-0
Du, S., Cao, J.: Behavioral anomaly detection approach based on log monitoring. In: 2015 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC), pp. 188–194 (2015). https://doi.org/10.1109/BESC.2015.7365981
Elastic: Anomaly detection job types. https://www.elastic.co/guide/en/machine-learning/current/ml-anomaly-detection-job-types.html
Elastic: Categorize text aggregation. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-categorize-text-aggregation.html
Elastic: Elastic Common Schema. https://www.elastic.co/elasticsearch/common-schema
Folmer, E., Verhoosel, J.: State of the art on semantic is standardization, interoperability & quality. J. Biomech. (2011)
Gormley, C., Tong, Z.: Elasticsearch the Definitive Guide: A Distributed Real-Time Search and Analytics Engine. O’Reilly Media, 1 edn. (2015)
Grafana Labs: About Grafana. https://grafana.com/docs/grafana/latest/introduction/
He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS), pp. 33–40 (2017). https://doi.org/10.1109/ICWS.2017.13
Kozhukh, D.: An easy look at Grafana architecture (2024). https://www.kozhuhds.com/blog/an-easy-look-at-grafana-architecture/
Kumar, G., Basri, S., Imam, A.A., Khowaja, S.A., Capretz, L.F., Balogun, A.O.: Data harmonization for heterogeneous datasets: a systematic literature review. Appl. Sci. 11(17), 8275 (2021). https://doi.org/10.3390/app11178275
Layer, L., et al.: Automatic log analysis with NLP for the CMS workflow handling. In: EPJ Web of Conferences, vol. 245, p. 03006 (2020). https://doi.org/10.1051/epjconf/202024503006
Le, V., Zhang, H.: Log-based anomaly detection without log parsing. In: 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 492–504 (2021). https://doi.org/10.1109/ASE51524.2021.9678773
Madkan, P.: Empirical study of ERP implementation strategies-filling gaps between the success and failure of ERP implementation process. Int. J. Inf. Comput. Technol. 4(6), 633–642 (2014)
Mendix: Deploy API (2024). https://docs.mendix.com/apidocs-mxsdk/apidocs/deploy-api/
Meng, W., et al.: A semantic-aware representation framework for online log analysis, pp. 1–7 (2020). https://doi.org/10.1109/ICCCN49398.2020.9209707
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Mitra, M., Sy, D.: The rise of elastic stack (2016). https://doi.org/10.13140/RG.2.2.17596.03203
Münch, J., Armbrust, O., Kowalczyk, M., Soto, M.: Prescriptive Process Models. In: Münch, J., Armbrust, O., Kowalczyk, M., Soto, M. (eds.) Software Process Definition and Management, pp. 19–77. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24291-5_2
Plotly: Plotly JavaScript Open Source Graphing Library. https://plotly.com/javascript/
Srivastava, D.: An introduction to data visualization tools and techniques in various domains. Int. J. Comput. Trends Technol. 71, 125–130 (2023). https://doi.org/10.14445/22312803/IJCTT-V71I4P116
Trent, B.: Categorize your logs with Elasticsearch categorize_text aggregation (2022). https://www.elastic.co/blog/categorize-your-logs-with-the-new-elasticsearch-categorize-text-search-aggregation
Wang, J., et al.: LogEvent2vec: LogEvent-to-vector based anomaly detection for large-scale logs in internet of things. Sens. (Switz.) 20(9) (2020). https://doi.org/10.3390/s20092451
Wang, J., Zhao, C., He, S., Gu, Y., Alfarraj, O., Abugabah, A.: LogUAD: log unsupervised anomaly detection based on word2Vec. Comput. Syst. Sci. Eng. 41(3), 1207–1222 (2022). https://doi.org/10.32604/csse.2022.022365
Wei, Y., Li, M., Xu, B.: Research on Establish an Efficient Log Analysis System with Kafka and Elastic Search. J. Softw. Eng. Appl. 10(11), 843–853 (2017). https://doi.org/10.4236/jsea.2017.1011047
Yu, B., et al.: Deep learning or classical machine learning? An empirical study on log-based anomaly detection. In: Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, ICSE 2024, Association for Computing Machinery, New York (2024). https://doi.org/10.1145/3597503.3623308
Zamfir, V.A., Carabas, M., Carabas, C., Tapus, N.: Systems monitoring and big data analysis using the elastic search system. In: Proceedings - 2019 22nd International Conference on Control Systems and Computer Science, CSCS 2019, pp. 188–193. Institute of Electrical and Electronics Engineers Inc. (2019). https://doi.org/10.1109/CSCS.2019.00039
Zhao, K., Xia, M.: Forming interoperability through interorganizational systems standards. J. Manag. Inf. Syst. 30(4), 269–298 (2014). https://doi.org/10.2753/MIS0742-1222300410
Zhou, J., Qian, Y., Zou, Q., Liu, P., Xiang, J.: DeepSyslog: deep anomaly detection on syslog using sentence embedding and metadata. IEEE Trans. Inf. Forensics Secur. (2022). https://doi.org/10.1109/TIFS.2022.3201379
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Eichhorn, T., Moreira, J.L.R., Pires, L.F., Meertens, L. (2025). Enhancing Observability: Real-Time Application Health Checks. In: Kaczmarek-Heß, M., Rosenthal, K., Suchánek, M., Da Silva, M.M., Proper, H.A., Schnellmann, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2024 Workshops . EDOC 2024. Lecture Notes in Business Information Processing, vol 537. Springer, Cham. https://doi.org/10.1007/978-3-031-79059-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-79059-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-79058-4
Online ISBN: 978-3-031-79059-1
eBook Packages: Computer ScienceComputer Science (R0)