Skip to main content

Introducing Variables to Data Objects in BPMN

  • Conference paper
  • First Online:
Enterprise Design, Operations, and Computing. EDOC 2024 Workshops (EDOC 2024)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 537))

  • 13 Accesses

Abstract

The management of data is crucial in today’s organizations, making it necessary to specify exactly how data is created, accessed, and manipulated during business process enactment. Given the importance of data, it comes as a surprise that approaches like BPMN only provide limited support for modeling data and how it is read and written. In particular, they cannot represent multiple data objects of the same type, and they lack concise semantics for multi-instance data objects. Against this background, this paper proposes an extension to BPMN process models by introducing variable identifiers to distinguish individual data objects of the same class in a given process. The behavior is detailed using translational semantics to Colored Petri nets, and a set of verification mechanisms is presented that allow for a more precise analysis of data objects in business processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/bptlab/bpmn-data-object-variables.

  2. 2.

    https://cpntools.org/.

References

  1. van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and convergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNTCS, vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30446-1_1

  2. van der Aalst, W.M.P., Artale, A., Montali, M., Tritini, S.: Object-centric behavioral constraints: integrating data and declarative process modelling. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th International Workshop on Description Logics, Montpellier, France, 18–21 July 2017. CEUR Workshop Proceedings, vol. 1879. CEUR-WS.org (2017). https://ceur-ws.org/Vol-1879/paper51.pdf

  3. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fundam. Informaticae 175(1–4), 1–40 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Awad, A.: BPMN-Q: a language to query business processes. In: Reichert, M., Strecker, S., Turowski, K. (eds.) EMISA 2007. LNI, vol. P-119, pp. 115–128. GI (2007). https://dl.gi.de/handle/20.500.12116/22195

  5. Awad, A., Decker, G., Lohmann, N.: Diagnosing and repairing data anomalies in process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 5–16. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-12186-9_2

  6. Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-Q and temporal logic. In: Dumas, M., Reichert, M., Shan, M.C. (eds.) BPM 2008. LNISA, vol. 5240, pp. 326–341. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-7_24

  7. Awad, A., Weidlich, M., Weske, M.: Specification, verification and explanation of violation for data aware compliance rules. In: Baresi, L., Chi, C., Suzuki, J. (eds.) ServiceWave 2009, ICSOC 2009. LNPSE, vol. 5900, pp. 500–515. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10383-4_37

  8. Boussetoua, R., Bennoui, H., Chaoui, A., Khalfaoui, K., Kerkouche, E.: An automatic approach to transform BPMN models to Pi-Calculus. In: AICCSA 2015, pp. 1–8. IEEE Computer Society (2015). https://doi.org/10.1109/AICCSA.2015.7507176

  9. Combi, C., Oliboni, B., Weske, M., Zerbato, F.: Conceptual modeling of inter-dependencies between processes and data. In: SAC 2018, pp. 110–119. ACM (2018). https://doi.org/10.1145/3167132.3167141

  10. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008). https://doi.org/10.1016/j.infsof.2008.02.006

    Article  MATH  Google Scholar 

  11. Dijkman, R.M., Van Gorp, P.: BPMN 2.0 execution semantics formalized as graph rewrite rules. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 16–30. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16298-5_4

  12. Dumas, M., Pfahl, D.: Modeling software processes using BPMN: when and when not? In: Kuhrmann, M., Münch, J., Richardson, I., Rausch, A., Zhang, H. (eds.) Managing Software Process Evolution, pp. 165–183. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31545-4_9

  13. Fahland, D.: Describing behavior of processes with many-to-many interactions. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNTCS, vol. 11522, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_1

  14. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Delta-BPMN: a concrete language and verifier for data-aware BPMN. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNISA, vol. 12875, pp. 179–196. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0_13

  15. Gianola, A., Montali, M., Winkler, S.: Object-centric conformance alignments with synchronization. In: Guizzardi, G., Santoro, F., Mouratidis, H., Soffer, P. (eds.) CAiSE 2024. LNCS, vol. 14663, pp. 3–19. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-61057-8_1

  16. Haarmann, S., Weske, M.: Cross-case data objects in business processes: semantics and analysis. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNBIP, vol. 392, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58638-6_1

  17. Hewelt, M., Weske, M.: A hybrid approach for flexible case modeling and execution. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 38–54. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9_3

  18. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for modelling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf. 9(3–4), 213–254 (2007). https://doi.org/10.1007/s10009-007-0038-x

    Article  MATH  Google Scholar 

  19. König, M., Lichtenstein, T., Seidel, A., Weske, M.: Data objects with variables in BPMN. In: del Río Ortega, A., et al. (eds.) BPM 2024, OBJECTS Workshop. CEUR Workshop Proceedings, vol. 3758. CEUR-WS.org (2024). https://ceur-ws.org/Vol-3758/paper-29.pdf

  20. König, M., Weske, M.: Multi-instance data behavior in BPMN. In: Fonseca, C.M., et al. (eds.) ER Forum. CEUR Workshop Proceedings, vol. 3618. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3618/forum_paper_4.pdf

  21. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-aware process management. J. Softw. Maint. Res. Pract. 23(4), 205–244 (2011). https://doi.org/10.1002/smr.524

  22. Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past. Theor. Comput. Sci. 148(2), 303–324 (1995). https://doi.org/10.1016/0304-3975(95)00035-U

    Article  MathSciNet  MATH  Google Scholar 

  23. Meghzili, S., Chaoui, A., Strecker, M., Kerkouche, E.: An approach for the transformation and verification of BPMN models to colored petri nets models. Int. J. Softw. Innov. 8(1), 17–49 (2020). https://doi.org/10.4018/IJSI.2020010102

    Article  MATH  Google Scholar 

  24. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNISA, vol. 8094, pp. 171–186. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_14

  25. OMG: Business Process Model and Notation (BPMN), Version 2.0.2. Technical report, Object Management Group (2014). https://www.omg.org/spec/BPMN/2.0.2

  26. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: From BPMN process models to BPEL web services. In: ICWS 2006, pp. 285–292. IEEE Computer Society (2006). https://doi.org/10.1109/ICWS.2006.67

  27. Petri, C.A.: Kommunikation mit Automaten. PhD Thesis, Institut für instrumentelle Mathematik, Bonn (1962)

    Google Scholar 

  28. Ramadan, M., Elmongui, H.G., Hassan, R.: BPMN formalisation using coloured petri nets. In: Proceedings of the 2nd GSTF Annual International Conference on Software Engineering & Applications (SEA 2011), pp. 83–90 (2011)

    Google Scholar 

  29. Snoeck, M.: Enterprise Information Systems Engineering - The MERODE Approach. The Enterprise Engineering Series, Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10145-3

  30. von Stackelberg, S., Putze, S., Mülle, J., Böhm, K.: Detecting data-flow errors in BPMN 2.0. Open J. Inf. Syst. (OJIS) 1(2), 1–19 (2014)

    Google Scholar 

  31. Steinau, S., Marrella, A., Andrews, K., Leotta, F., Mecella, M., Reichert, M.: DALEC: a framework for the systematic evaluation of data-centric approaches to process management software. Softw. Syst. Model. 18(4) (2019)

    Google Scholar 

  32. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the data-flow perspective for business process management. Inf. Syst. Res. 17(4), 374–391 (2006). https://doi.org/10.1287/isre.1060.0105

  33. Trčka, N., van der Aalst, W.M.P., Sidorova, N.: Data-flow anti-patterns: discovering data-flow errors in workflows. In: van Eck, P., Gordijn, J., Wieringa, R.J. (eds.) CAiSE 2009. LNISA, vol. 5565, pp. 425–439. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02144-2_34

  34. Voglhofer, T., Rinderle-Ma, S.: Collection and elicitation of business process compliance patterns with focus on data aspects. Bus. Inf. Syst. Eng. 62(4), 361–377 (2020). https://doi.org/10.1007/s12599-019-00594-3

    Article  MATH  Google Scholar 

  35. Weske, M.: Business Process Management - Concepts, Languages, Architectures, Third Edition. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59432-2

  36. Wong, P.Y.H., Gibbons, J.: Formalisations and applications of BPMN. Sci. Comput. Program. 76(8), 633–650 (2011). https://doi.org/10.1016/j.scico.2009.09.010

    Article  MATH  Google Scholar 

  37. Xiang, D., Liu, G., Yan, C., Jiang, C.: Detecting data-flow errors based on petri nets with data operations. IEEE CAA J. Autom. Sinica 5(1), 251–260 (2018). https://doi.org/10.1109/JAS.2017.7510766

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian König .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

König, M., Lichtenstein, T., Seidel, A., Weske, M. (2025). Introducing Variables to Data Objects in BPMN. In: Kaczmarek-Heß, M., Rosenthal, K., Suchánek, M., Da Silva, M.M., Proper, H.A., Schnellmann, M. (eds) Enterprise Design, Operations, and Computing. EDOC 2024 Workshops . EDOC 2024. Lecture Notes in Business Information Processing, vol 537. Springer, Cham. https://doi.org/10.1007/978-3-031-79059-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-79059-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-79058-4

  • Online ISBN: 978-3-031-79059-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics