Abstract
The paper is devoted to the optimization problems with equality constraints in the case when the Lagrange multiplier associated with the objective function might be equal to zero. We introduce a new modified Lagrange system that has a singular solution of the original optimization problem as its regular solution. We obtain conditions under which this solution is a regular locally unique solution of the modified Lagrange system. Our results are based on constructions of the p-regularity theory and the structure of the p-factor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Consultants Bureau, New York and London (1987)
Brezhneva, O.A., Evtushenko, Y.G., Tret’yakov, A.A.: The 2-factor-method with a modified lagrange function for degenerate constrained optimization problems. Dokl. Math. 73(3), 384–387 (2006)
Brezhneva, O., Evtushenko, Y., Malkova, V., Tret’yakov, A.: The pth-order karush-kuhn-tucker type optimality conditions for nonregular inequality constrained optimization problems. In: Olenev, N. et al. (eds.) Optimization and Applications, OPTIMA 2023, LNCS, vol. 14395, pp. 14–32. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47859-8_2
Brezhneva, O.A., Izmailov, A.F., Tret’yakov, A.A., Khmura, A.: An approach to finding singular solutions to a general system of nonlinear equations. Comput. Math. Math. Phys. 40(3), 347–358 (2000)
Brezhneva, O.A., Tret’yakov, A.A.: Methods for solving nonregular optimization problems. In: Questions of Simulation and Analysis in Problems of the Decision–Making Theory, pp. 52–75. Computing Center of the Russian Academy of Sciences, Moscow (2000). (in Russian)
Brezhneva, O., Tret’yakov, A.A.: The p-factor-Lagrange methods for degenerate nonlinear programming. Numer. Funct. Anal. Optim. 28(9–10), 1051–1086 (2007)
Brezhneva, O., Tret’yakov, A.A.: When the Karush-kuhn-tucker theorem fails constraint qualifications and higher-order optimality conditions for degenerate optimization problems. J. Optim. Theory Appl. 174(2), 367–387 (2017)
Evtushenko, Y., Malkova, V., Tret’yakov, A.: New perspective on slack variables applications to singular optimization problems. In: Evtushenko, Y. et al. (eds.) Optimization and Applications, OPTIMA 2018, CCIS, vol. 974, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10934-9_1
Evtushenko, Y., Malkova, V., Tret’yakov, A.: Exit from singularity. New optimization methods and the p-regularity theory applications. In: Olenev, N.N. et al. (eds.) Optimization and Applications, OPTIMA 2021, LNCS, vol. 13078, pp. 3–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91059-4_1
Evtushenko, Y.G., Tret’yakov, A.A.: 2-factor newton method for solving constrained optimization problems with a degenerate Kuhn-Tucker system. Dokl. Math. 99(2), 129–131 (2019)
Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam, The Netherlands (1979)
Izmailov, A.F., Tret’yakov, A.A.: Factor-Analysis of Nonlinear Mappings. Nauka, Moscow (1994). (in Russian)
Melo, A.S., Dos Santos, L.B., Rojas-Medar, M.A.: Nonregular mixed-constrained optimization problems. Optimization 71(16), 4879–4903 (2022)
Polyak, B.T.: Introduction to Optimization. Nauka, Moscow (1983). (in Russian)
Tret’yakov, A.A.: Necessary conditions for optimality of \(p\)th order. In: Control and Optimization, MSU, Moscow, pp. 28–35 (1983). (in Russian)
Tret’yakov, A.A.: Necessary and sufficient conditions for optimality of p-th order. USSR Comput. Math. Math. Phys. 24(1), 123–127 (1984)
Tret’yakov, A.A.: The implicit function theorem in degenerate problems. Russ. Math. Surv. 42(5), 179–180 (1987)
Tret’yakov, A.A., Marsden, J.E.: Factor-analysis of nonlinear mappings: p-regularity theory. Commun. Pure Appl. Anal. 2(4), 425–445 (2003)
Vivanco-Orellana, V., Osuna-Gómez, R., Rojas-Medar, M.A.: Necessary and sufficient optimality conditions for non-regular problems. Numer. Funct. Anal. Optim. 44(12), 1228–1250 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brezhneva, O., Evtushenko, Y., Malkova, V., Tret’yakov, A. (2025). Singular Optimization Problems and p-Factor Approach for Their Analysis. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2024. Lecture Notes in Computer Science, vol 15218. Springer, Cham. https://doi.org/10.1007/978-3-031-79119-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-79119-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-79118-5
Online ISBN: 978-3-031-79119-2
eBook Packages: Computer ScienceComputer Science (R0)