Skip to main content

Singular Optimization Problems and p-Factor Approach for Their Analysis

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2024)

Abstract

The paper is devoted to the optimization problems with equality constraints in the case when the Lagrange multiplier associated with the objective function might be equal to zero. We introduce a new modified Lagrange system that has a singular solution of the original optimization problem as its regular solution. We obtain conditions under which this solution is a regular locally unique solution of the modified Lagrange system. Our results are based on constructions of the p-regularity theory and the structure of the p-factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal Control. Consultants Bureau, New York and London (1987)

    Book  MATH  Google Scholar 

  2. Brezhneva, O.A., Evtushenko, Y.G., Tret’yakov, A.A.: The 2-factor-method with a modified lagrange function for degenerate constrained optimization problems. Dokl. Math. 73(3), 384–387 (2006)

    Article  MATH  Google Scholar 

  3. Brezhneva, O., Evtushenko, Y., Malkova, V., Tret’yakov, A.: The pth-order karush-kuhn-tucker type optimality conditions for nonregular inequality constrained optimization problems. In: Olenev, N. et al. (eds.) Optimization and Applications, OPTIMA 2023, LNCS, vol. 14395, pp. 14–32. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47859-8_2

  4. Brezhneva, O.A., Izmailov, A.F., Tret’yakov, A.A., Khmura, A.: An approach to finding singular solutions to a general system of nonlinear equations. Comput. Math. Math. Phys. 40(3), 347–358 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Brezhneva, O.A., Tret’yakov, A.A.: Methods for solving nonregular optimization problems. In: Questions of Simulation and Analysis in Problems of the Decision–Making Theory, pp. 52–75. Computing Center of the Russian Academy of Sciences, Moscow (2000). (in Russian)

    Google Scholar 

  6. Brezhneva, O., Tret’yakov, A.A.: The p-factor-Lagrange methods for degenerate nonlinear programming. Numer. Funct. Anal. Optim. 28(9–10), 1051–1086 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezhneva, O., Tret’yakov, A.A.: When the Karush-kuhn-tucker theorem fails constraint qualifications and higher-order optimality conditions for degenerate optimization problems. J. Optim. Theory Appl. 174(2), 367–387 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evtushenko, Y., Malkova, V., Tret’yakov, A.: New perspective on slack variables applications to singular optimization problems. In: Evtushenko, Y. et al. (eds.) Optimization and Applications, OPTIMA 2018, CCIS, vol. 974, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10934-9_1

  9. Evtushenko, Y., Malkova, V., Tret’yakov, A.: Exit from singularity. New optimization methods and the p-regularity theory applications. In: Olenev, N.N. et al. (eds.) Optimization and Applications, OPTIMA 2021, LNCS, vol. 13078, pp. 3–19. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91059-4_1

  10. Evtushenko, Y.G., Tret’yakov, A.A.: 2-factor newton method for solving constrained optimization problems with a degenerate Kuhn-Tucker system. Dokl. Math. 99(2), 129–131 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam, The Netherlands (1979)

    MATH  Google Scholar 

  12. Izmailov, A.F., Tret’yakov, A.A.: Factor-Analysis of Nonlinear Mappings. Nauka, Moscow (1994). (in Russian)

    MATH  Google Scholar 

  13. Melo, A.S., Dos Santos, L.B., Rojas-Medar, M.A.: Nonregular mixed-constrained optimization problems. Optimization 71(16), 4879–4903 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Polyak, B.T.: Introduction to Optimization. Nauka, Moscow (1983). (in Russian)

    MATH  Google Scholar 

  15. Tret’yakov, A.A.: Necessary conditions for optimality of \(p\)th order. In: Control and Optimization, MSU, Moscow, pp. 28–35 (1983). (in Russian)

    Google Scholar 

  16. Tret’yakov, A.A.: Necessary and sufficient conditions for optimality of p-th order. USSR Comput. Math. Math. Phys. 24(1), 123–127 (1984)

    Article  MATH  Google Scholar 

  17. Tret’yakov, A.A.: The implicit function theorem in degenerate problems. Russ. Math. Surv. 42(5), 179–180 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tret’yakov, A.A., Marsden, J.E.: Factor-analysis of nonlinear mappings: p-regularity theory. Commun. Pure Appl. Anal. 2(4), 425–445 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vivanco-Orellana, V., Osuna-Gómez, R., Rojas-Medar, M.A.: Necessary and sufficient optimality conditions for non-regular problems. Numer. Funct. Anal. Optim. 44(12), 1228–1250 (2023)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlasta Malkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brezhneva, O., Evtushenko, Y., Malkova, V., Tret’yakov, A. (2025). Singular Optimization Problems and p-Factor Approach for Their Analysis. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2024. Lecture Notes in Computer Science, vol 15218. Springer, Cham. https://doi.org/10.1007/978-3-031-79119-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-79119-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-79118-5

  • Online ISBN: 978-3-031-79119-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics