Abstract
In the era of foundational image segmentation models, there is a pressing need to leverage the outputs of these models and enhance the boundary accuracy of domain-specific segmentation results using lightweight post-processing techniques. Numerous existing boundary refinement approaches neglect the significance of incorporating diverse contextual scopes and global knowledge, resulting in restricted adaptability to different coarse segmentation errors. Moreover, the prevailing models are often lacking in lightweight design. To address these challenges, we propose a novel framework called Multi-Range Context Interaction (MRCI) that aims to refine the boundaries of predicted masks by incorporating comprehensive context knowledge while maintaining computational efficiency. Our approach utilizes a multi-range context-aware strategy to extract more informative local features and incorporates global knowledge prompts to guide the boundary refinement process. Experimental results on the widely used Cityscapes, ADE20K and satellite remote sensing dataset SpaceNet demonstrate the effectiveness of our approach, achieving top-tier Average Precision (AP) and mean IoU among the current state-of-the-art boundary refinement models while utilizing only 4M parameters. The source code will be available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
SpaceNet on amazon web services (AWS). Datasets. https://spacenet.ai/datasets/ (Last modified October 1st, 2018)
Chen, H., Sun, K., Tian, Z., Shen, C., Huang, Y., Yan, Y.: BlendMask: top-down meets bottom-up for instance segmentation. In: CVPR, pp. 8573–8581 (2020)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: CVPR, pp. 1290–1299 (2022)
Cheng, T., Wang, X., Huang, L., Liu, W.: Boundary-preserving mask R-CNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 660–676. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_39
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)
He, J., Li, P., Geng, Y., Xie, X.: FastInst: a simple query-based model for real-time instance segmentation. In: CVPR, pp. 23663–23672 (2023)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)
Jain, J., Li, J., Chiu, M.T., Hassani, A., Orlov, N., Shi, H.: OneFormer: one transformer to rule universal image segmentation. In: CVPR, pp. 2989–2998 (2023)
Ke, L., Danelljan, M., Li, X., Tai, Y.W., Tang, C.K., Yu, F.: Mask transfiner for high-quality instance segmentation. In: CVPR, pp. 4412–4421 (2022)
Kirillov, A., et al.: Segment anything. In: ICCV, pp. 4015–4026 (2023)
Kirillov, A., Wu, Y., He, K., Girshick, R.: PointRend: image segmentation as rendering. In: CVPR, pp. 9799–9808 (2020)
Li, F., et al.: Mask DINO: towards a unified transformer-based framework for object detection and segmentation. In: CVPR, pp. 3041–3050 (2023)
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 850–855 (2006). https://doi.org/10.1109/ICPR.2006.479
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, vo. 28 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR, pp. 5693–5703 (2019)
Tang, C., Chen, H., Li, X., Li, J., Zhang, Z., Hu, X.: Look closer to segment better: Boundary patch refinement for instance segmentation. In: CVPR, pp. 13926–13935 (2021)
Vaswani, A., et al.: Attention is all you need. In: NIPS, vol. 30 (2017)
Wan, Q., Huang, Z., Kang, B., Feng, J., Zhang, L.: Harnessing diffusion models for visual perception with meta prompts. arXiv preprint arXiv:2312.14733 (2023)
Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE TPAMI 43(10), 3349–3364 (2020)
Wu, Y., et al.: RDLNet: a novel and accurate real-world document localization method. In: ACM Multimedia (2024)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. NIPS 34, 12077–12090 (2021)
Xiong, Y., et al.: UPSNet: a unified panoptic segmentation network. In: CVPR, pp. 8818–8826 (2019)
Yuan, Y., Xie, J., Chen, X., Wang, J.: SegFix: model-agnostic boundary refinement for segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 489–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_29
Zhang, G., et al.: RefineMask: towards high-quality instance segmentation with fine-grained features. In: CVPR, pp. 6861–6869 (2021)
Zhang, Y., Yang, W., Hu, R.: BAProto: boundary-aware prototype for high-quality instance segmentation. In: ICME, pp. 2333–2338. IEEE (2023)
Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR, pp. 633–641 (2017)
Zhu, C., Zhang, X., Li, Y., Qiu, L., Han, K., Han, X.: SharpContour: a contour-based boundary refinement approach for efficient and accurate instance segmentation. In: CVPR, pp. 4392–4401 (2022)
Zou, X., et al.: Segment everything everywhere all at once. In: NIPS, vol. 36 (2024)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, Y., Lyu, W., Liang, X., Zheng, Q., Wei, J., Jin, L. (2025). MRCI: Multi-range Context Interaction for Boundary Refinement in Image Segmentation. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. ICPR 2024. Lecture Notes in Computer Science, vol 15333. Springer, Cham. https://doi.org/10.1007/978-3-031-80136-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-80136-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-80135-8
Online ISBN: 978-3-031-80136-5
eBook Packages: Computer ScienceComputer Science (R0)