Skip to main content

ICPR 2024 Leaf Inspect Competition: Leaf Instance Segmentation and Counting

  • Conference paper
  • First Online:
Pattern Recognition. Competitions (ICPR 2024)

Abstract

The advancement in imaging technologies with computer vision-based methods have facilitated non-invasive plant trait analysis for Precision Agriculture. These traits are primarily derived from leaf level analysis of plant images, underlining the importance of leaf instance segmentation and counting tasks (termed as leaf phenotyping). To advance the development of state-of-the-art methods for the aforementioned tasks, various plant datasets have been proposed. However, these datasets comprises of model plants with uniform leaf structures. This limits the applicability of these methods on classical plants such as rice and wheat, which exhibit variability in leaf shape, size, and arrangement. To address this bottleneck, we introduced a novel dataset comprising of high-resolution rice and wheat plant images, annotated at leaf instance level. Based on this dataset, the competition “ICPR 2024 Leaf Inspect” addressed computer vision challenges in: (a) Leaf instance segmentation and (b) Leaf counting tasks. This paper report and discuss methods and findings of the participating teams. The proposed benchmark dataset will facilitate computer vision research on non-rigid objects with high degree of self-similarity and self-occlusions (Leaf Inspect Competition Website: https://sites.google.com/view/icpr-2024/.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aich, S., Stavness, I.: Leaf counting with deep convolutional and deconvolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2080–2089 (2017)

    Google Scholar 

  2. Bell, J., Dee, H.M.: Leaf segmentation through the classification of edges. arXiv preprint arXiv:1904.03124 (2019)

  3. Bhagat, S., Kokare, M., Haswani, V., Hambarde, P., Kamble, R.: Eff-UNet++: a novel architecture for plant leaf segmentation and counting. Ecol. Inform. 68, 101583 (2022)

    Article  Google Scholar 

  4. Bhugra, S., Garg, K., Chaudhury, S., Lall, B.: A hierarchical framework for leaf instance segmentation: application to plant phenotyping. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10173–10179. IEEE (2021)

    Google Scholar 

  5. Bhugra, S., Kaushik, V., Gupta, A., Lall, B., Chaudhury, S.: AnoLeaf: unsupervised leaf disease segmentation via structurally robust generative inpainting. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6415–6424 (2023)

    Google Scholar 

  6. Bhugra, S., Srivastava, S., Kaushik, V., Mukherjee, P., Lall, B.: Plant data generation with generative AI: an application to plant phenotyping. Appl. Gener. AI, 503–535 (2024)

    Google Scholar 

  7. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  8. Buzzy, M., Thesma, V., Davoodi, M., Mohammadpour Velni, J.: Real-time plant leaf counting using deep object detection networks. Sensors 20(23), 6896 (2020)

    Article  Google Scholar 

  9. Chen, F., Giuffrida, M.V., Tsaftaris, S.A.: Adapting vision foundation models for plant phenotyping. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 604–613 (2023)

    Google Scholar 

  10. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1290–1299 (2022)

    Google Scholar 

  11. Cruz, J.A., et al.: Multi-modality imagery database for plant phenotyping. Mach. Vis. Appl. 27, 735–749 (2016)

    Article  Google Scholar 

  12. De Brabandere, B., Neven, D., Van Gool, L.: Semantic instance segmentation with a discriminative loss function. arXiv preprint arXiv:1708.02551 (2017)

  13. Du, R., Ma, Z., Xie, P., He, Y., Cen, H.: PST: plant segmentation transformer for 3D point clouds of rapeseed plants at the podding stage. ISPRS J. Photogramm. Remote. Sens. 195, 380–392 (2023)

    Article  Google Scholar 

  14. Giuffrida, M.V., Doerner, P., Tsaftaris, S.A.: Pheno-deep counter: a unified and versatile deep learning architecture for leaf counting. Plant J. 96(4), 880–890 (2018)

    Article  Google Scholar 

  15. Guo, R., Qu, L., Niu, D., Li, Z., Yue, J.: LeafMask: towards greater accuracy on leaf segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1249–1258 (2021)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  17. Itzhaky, Y., Farjon, G., Khoroshevsky, F., Shpigler, A., Bar-Hillel, A.: Leaf counting: multiple scale regression and detection using deep CNNs. In: BMVC, vol. 328. Newcastle (2018)

    Google Scholar 

  18. Jiang, K., Afzaal, U., Lee, J.: Transformer-based weed segmentation for grass management. Sensors 23(1), 65 (2022)

    Article  Google Scholar 

  19. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8 (2023). https://github.com/ultralytics/ultralytics

  20. Kulikov, V., Lempitsky, V.: Instance segmentation of biological images using harmonic embeddings. In: CVPR, pp. 3843–3851 (2020)

    Google Scholar 

  21. Kumar, J.P., Domnic, S.: Rosette plant segmentation with leaf count using orthogonal transform and deep convolutional neural network. Mach. Vis. Appl. 31(1), 1–14 (2020)

    Google Scholar 

  22. Kuznichov, D., Zvirin, A., Honen, Y., Kimmel, R.: Data augmentation for leaf segmentation and counting tasks in rosette plants. In: CVPRW (2019)

    Google Scholar 

  23. Li, Y., Zhang, X., Chen, D.: CSRNet: dilated convolutional neural networks for understanding the highly congested scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1091–1100 (2018)

    Google Scholar 

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Liu, Z., et al.:: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  26. Morris, D.: A pyramid CNN for dense-leaves segmentation. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 238–245. IEEE (2018)

    Google Scholar 

  27. Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 891–898 (2014)

    Google Scholar 

  28. Ren, M., Zemel, R.S.: End-to-end instance segmentation with recurrent attention. In: CVPR (2017)

    Google Scholar 

  29. Romera-Paredes, B., Torr, P.H.S.: Recurrent instance segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part VI. LNCS, vol. 9910, pp. 312–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_19

    Chapter  Google Scholar 

  30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  31. Scharr, H., Minervini, M., Fischbach, A., Tsaftaris, S.A.: Annotated image datasets of rosette plants. In: ECCV, pp. 6–12 (2014)

    Google Scholar 

  32. Scharr, H., Minervini, M., French, A.P., et al.: Leaf segmentation in plant phenotyping: a collation study. Mach. Vis. Appl. 27(4), 585–606 (2016)

    Article  Google Scholar 

  33. Sekachev, B., Zhavoronkov, A., Manovich, N.: Computer vision annotation tool: a universal approach to data annotation. Intel [Internet] 1 (2019)

    Google Scholar 

  34. Shadrin, D.G., Kulikov, V., Fedorov, M.V.: Instance segmentation for assessment of plant growth dynamics in artificial soilless conditions. In: BMVC, p. 329 (2018)

    Google Scholar 

  35. Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S.: Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21(2), 110–124 (2016)

    Article  Google Scholar 

  36. Tu, Y.L., Lin, W.Y., Lin, Y.C.: Toward automatic plant phenotyping: starting from leaf counting. Multimedia Tools Appl., 1–15 (2022)

    Google Scholar 

  37. Uchiyama, H., et al.: An easy-to-setup 3D phenotyping platform for Komatsuna dataset. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2038–2045 (2017)

    Google Scholar 

  38. Vayssade, J.A., Jones, G., Gée, C., Paoli, J.N.: Pixelwise instance segmentation of leaves in dense foliage. Comput. Electron. Agric. 195, 106797 (2022)

    Article  Google Scholar 

  39. Wang, M., Fu, B., Fan, J., Wang, Y., Zhang, L., Xia, C.: Sweet potato leaf detection in a natural scene based on faster R-CNN with a visual attention mechanism and DIoU-NMS. Ecol. Inform. 73, 101931 (2023)

    Article  Google Scholar 

  40. Weyler, J., Milioto, A., Falck, T., Behley, J., Stachniss, C.: Joint plant instance detection and leaf count estimation for in-field plant phenotyping. IEEE Robot. Autom. Lett. 6(2), 3599–3606 (2021)

    Article  Google Scholar 

  41. Williams, D., Macfarlane, F., Britten, A.: Leaf only SAM: a segment anything pipeline for zero-shot automated leaf segmentation. Smart Agric. Technol. 8, 100515 (2024)

    Article  Google Scholar 

  42. Yang, K., Zhong, W., Li, F.: Leaf segmentation and classification with a complicated background using deep learning. Agronomy 10(11), 1721 (2020)

    Article  Google Scholar 

Download references

Ackowledgements

The authors would like to express their gratitude to Dr. Sudhir Kumar from Indian Agricultural Research Institute (IARI) Delhi for his valuable insights and constructive feedback on plant data generation. We also acknowledge the contributions of Ashutosh Yadav and team members Shreya Sharma, Kumar Gaurav, Harshit Arora, Sudeep Rathore, and Utkarsh Dixit.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prerana Mukherjee or Vinay Kaushik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhugra, S. et al. (2025). ICPR 2024 Leaf Inspect Competition: Leaf Instance Segmentation and Counting. In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. Competitions. ICPR 2024. Lecture Notes in Computer Science, vol 15334. Springer, Cham. https://doi.org/10.1007/978-3-031-80139-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80139-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80138-9

  • Online ISBN: 978-3-031-80139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics