Abstract
Third-party private set intersection (PSI) allows two parties to compute the intersection of their private input sets without revealing any more information than the result to an inputless third party. In this work, we leverage homomorphic encryption and oblivious pseudorandom function techniques for the first time to design third-party PSI protocols. We present two highly efficient third-party PSI protocols characterized by linear communication and computational complexity, along with a requirement of only 2 communication rounds. These protocols significantly lower the computational workload compared to prior work. Furthermore, we extend our investigation to third-party PSI cardinality protocols. Our constructions to achieve the cardinality functionality attain linear communication and computational complexity. Finally, we implement our protocols in C++ and perform a comprehensive evaluation, an aspect previously unexplored in third-party PSI research. The results demonstrate that our OPRF-based third-party PSI can obtain a 4.6–13.78 times faster improvement over the HE-based third-party PSI with a single thread in LAN setting. Moreover, the results indicate that our OPRF-based third-party PSI will yield even greater improvements as the set size increases, compared to HE-based third-party PSI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben-Efraim, A., Nissenbaum, O., Omri, E., Paskin-Cherniavsky, A.: PSImple: practical multiparty maliciously-secure private set intersection. In: Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, pp. 1098–1112 (2022)
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)
Bose, P., et al.: On the false-positive rate of bloom filters. Inf. Process. Lett. 108(4), 210–213 (2008)
Buddhavarapu, P., Knox, A., Mohassel, P., Sengupta, S., Taubeneck, E., Vlaskin, V.: Private matching for compute. Cryptology ePrint Archive (2020)
Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.: Efficient linear multiparty psi and extensions to circuit/quorum psi. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1182–1204 (2021)
Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_2
Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic encryption with malicious security. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1223–1237 (2018)
Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1243–1255 (2017)
Christensen, K., Roginsky, A., Jimeno, M.: A new analysis of the false positive rate of a bloom filter. Inf. Process. Lett. 110(21), 944–949 (2010)
Cong, K., et al.: Labeled psi from homomorphic encryption with reduced computation and communication. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1135–1150 (2021)
Davidson, A., Cid, C.: An efficient toolkit for computing private set operations. In: Pieprzyk, J., Suriadi, S. (eds.) Information Security and Privacy: 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand, 3–5 July 2017, Proceedings, Part II 22, pp. 261–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_15
De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (eds.) International Conference on Financial Cryptography and Data Security, pp. 143–159. Springer, Cham (2010). https://doi.org/10.1007/978-3-642-14577-3_13
Devroye, L., Morin, P.: Cuckoo hashing: further analysis. Inf. Process. Lett. 86(4), 215–219 (2003)
Dittmer, S., et al.: Function secret sharing for PSI-CA: with applications to private contact tracing. arXiv preprint arXiv:2012.13053 (2020)
Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an efficient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 789–800 (2013)
Duong, T., Phan, D.H., Trieu, N.: Catalic: delegated PSI cardinality with applications to contact tracing. In: Moriai, S., Wang, H. (eds.) International Conference on the Theory and Application of Cryptology and Information Security, pp. 870–899. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_29
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)
Flavio, B., et al.: pailliercryptolib (2023)
Fotakis, D., Pagh, R., Sanders, P., Spirakis, P.: Space efficient hash tables with worst case constant access time. Theory Comput. Syst. 38(2), 229–248 (2005)
Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Providing Sound Foundations for Cryptography: on the Work of Shafi Goldwasser and Silvio Micali, pp. 173–201 (2019)
Hallgren, P., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving ridesharing. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 276–291. IEEE (2017)
Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (eds.) Theory of Cryptography Conference, pp. 155–175. Springer, Cham (2008). https://doi.org/10.1007/978-3-540-78524-8_10
Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (eds.) IACR International Workshop on Public Key Cryptography, pp. 175–203. Springer, Cham (2017). https://doi.org/10.1007/978-3-662-54365-8_8
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (eds.) International Algorithmic Number Theory Symposium, pp. 267–288. Springer, Cham (1998). https://doi.org/10.1007/BFb0054868
Hu, J., Chen, J., Dai, W., Wang, H.: Fully homomorphic encryption-based protocols for enhanced private set intersection functionalities. Cryptology ePrint Archive (2023)
Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic communities. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 78–86 (1999)
Ion, M., et al.: On deploying secure computing: private intersection-sum-with-cardinality. In: 2020 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 370–389. IEEE (2020)
Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private contact discovery at scale. In: 28th USENIX Security Symposium (USENIX Security 2019), pp. 1447–1464 (2019)
Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling private set intersection to billion-element sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 195–215. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_13
Kerschbaum, F.: Outsourced private set intersection using homomorphic encryption. In: Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, pp. 85–86 (2012)
Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 818–829 (2016)
Le, P.H., Ranellucci, S., Gordon, S.D.: Two-party private set intersection with an untrusted third party. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2403–2420 (2019)
Meadows, C.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: 1986 IEEE Symposium on Security and Privacy, pp. 134–134. IEEE (1986)
Motwani, R., Raghavan, P.: Randomized algorithms. ACM Comput. Surv. (CSUR) 28(1), 33–37 (1996)
Nagaraja, S., Mittal, P., Hong, C.Y., Caesar, M., Borisov, N.: \(\{\)BotGrep\(\}\): finding \(\{\)P2P\(\}\) bots with structured graph analysis. In: 19th USENIX Security Symposium (USENIX Security 2010) (2010)
Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_22
Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-Light: lightweight private set intersection from sparse ot extension. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_13
Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set intersection using permutation-based hashing. In: 24th USENIX Security Symposium (USENIX Security 2015), pp. 515–530 (2015)
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15
Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-based PSI with linear communication. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_5
Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via Cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_5
Pinkas, B., Schneider, T., Zohner, M.: Scalable private set intersection based on OT extension. ACM Trans. Privacy Secur. (TOPS) 21(2), 1–35 (2018)
Raab, M., Steger, A.: “Balls into Bins’’—a simple and tight analysis. In: Luby, M., Rolim, J.D.P., Serna, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49543-6_13
Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execution. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1229–1242 (2017)
Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and Circuit-PSI from Vector-OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 901–930. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_31
Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: lightweight contact tracing with strong privacy. arXiv preprint arXiv:2004.13293 (2020)
Wu, M., Yuen, T.H.: Efficient unbalanced private set intersection cardinality and user-friendly privacy-preserving contact tracing. In: 32nd USENIX Security Symposium (USENIX Security 2023), pp. 283–300 (2023)
Yeo, F.Y., Ying, J.H.: Third-party private set intersection. In: 2023 IEEE International Symposium on Information Theory (ISIT), pp. 1633–1638. IEEE (2023)
Yeo, F.Y., Ying, J.H.: A near-linear quantum-safe third-party private set intersection protocol. Cryptology ePrint Archive (2024)
Acknowledgement
The authors are very appreciate for the reviewers’ valuable comments which are helpful for improving the presentation of the paper. The paper is supported by the National Natural Science Foundation of China under Grant 12371525, and also supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDB0690200.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, K., Li, Y., Wang, M. (2025). An Efficient Toolkit for Computing Third-Party Private Set Intersection. In: Mukhopadhyay, S., Stănică, P. (eds) Progress in Cryptology – INDOCRYPT 2024. INDOCRYPT 2024. Lecture Notes in Computer Science, vol 15495. Springer, Cham. https://doi.org/10.1007/978-3-031-80308-6_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-80308-6_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-80307-9
Online ISBN: 978-3-031-80308-6
eBook Packages: Computer ScienceComputer Science (R0)