Skip to main content

Improving Assembly Lines with Digital Twins: A Synthetic Case Study

  • Conference paper
  • First Online:
Advances in Artificial Intelligence – IBERAMIA 2024 (IBERAMIA 2024)

Abstract

This study introduces a theoretical framework for the development and deployment of digital twins (DTs), with a focus on creating behavioral models using synthetic data. The aim is to enhance assembly line operations in smart manufacturing by improving process efficiency and product quality. The study details the types of synthetic data generated, the simulations conducted, and their outcomes, emphasizing significant improvements in operational processes. Key objectives include streamlining assembly processes, raising product standards, reducing machine downtime, and adjusting production to demand fluctuations. The research explores various categories of synthetic data, such as cycle times, machine performance metrics, product quality indicators, production volumes, and maintenance logs. Simulations with these datasets demonstrate the DT’s capability to predict and address production challenges effectively. The findings underscore the potential benefits of integrating DTs into manufacturing workflows, offering valuable insights for researchers and industry professionals. Additionally, the paper emphasizes the importance of validating these models with real-world data in future studies, including incorporating advanced AI features and verifying the methodology within actual manufacturing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alnaqeib, R., Alshammari, F.H., Zaidan, M., Zaidan, A., Zaidan, B., Hazza, Z.M.: An overview: extensible markup language technology. arXiv preprint arXiv:1006.4565 (2010)

  2. Azangoo, M., Taherkordi, A., Blech, J.O.: Digital twins for manufacturing using UML and behavioral specifications. In: 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1, pp. 1035–1038. IEEE (2020)

    Google Scholar 

  3. Dave, D.M.K., Mittapally, B.K.: Data integration and interoperability in IoT: challenges, strategies and future direction (2024)

    Google Scholar 

  4. Drahoš, P., Kučera, E., Haffner, O., Klimo, I.: Trends in industrial communication and OPC UA. In: 2018 Cybernetics and Informatics (K &I), pp. 1–5. IEEE (2018)

    Google Scholar 

  5. Drath, R.: AutomationML: A Practical Guide. Walter de Gruyter GmbH & Co KG (2021)

    Google Scholar 

  6. Gilmore, W.J.: Introducing mySQL. Beginning PHP and MySQL: From Novice to Professional, pp. 621–633 (2008)

    Google Scholar 

  7. Glatt, M., Sinnwell, C., Yi, L., Donohoe, S., Ravani, B., Aurich, J.C.: Modeling and implementation of a digital twin of material flows based on physics simulation. J. Manuf. Syst. 58, 231–245 (2021)

    Article  Google Scholar 

  8. Grinberg, M.: Flask Web Development. O’Reilly Media, Inc., Sebastopol (2018)

    Google Scholar 

  9. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020)

    Article  MATH  Google Scholar 

  10. Hillar, G.C.: Django RESTful Web Services: The Easiest Way to Build Python RESTful APIs and Web Services with Django. Packt Publishing Ltd, Birmingham (2018)

    Google Scholar 

  11. Ibrahim, M., Rjabtšikov, V., Gilbert, R.: Overview of digital twin platforms for EV applications. Sensors 23(3), 1414 (2023)

    Article  MATH  Google Scholar 

  12. Ko, T., Lee, J.H., Cho, H., Cho, S., Lee, W., Lee, M.: Machine learning based anomaly detection via integration of manufacturing, inspection and after sales service data. Indust. Manag. Data Syst. 117(5), 927–945 (2017)

    Article  MATH  Google Scholar 

  13. Kulkarni, V., Barat, S., Clark, T.: Towards adaptive enterprises using digital twins. In: 2019 Winter Simulation Conference (WSC), pp. 60–74. IEEE (2019)

    Google Scholar 

  14. Liu, Q., Liu, B., Wang, G., Zhang, C.: A comparative study on digital twin models. In: AIP Conference Proceedings, vol. 2073. AIP Publishing (2019)

    Google Scholar 

  15. Madni, A.M., Madni, C.C., Lucero, S.D.: Leveraging digital twin technology in model based systems engineering. Systems 7(1), 7 (2019)

    Article  MATH  Google Scholar 

  16. Martinez, G.S., Sierla, S., Karhela, T., Vyatkin, V.: Automatic generation of a simulation based digital twin of an industrial process plant. In: IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, pp. 3084–3089. IEEE (2018)

    Google Scholar 

  17. McKinney, W., et al.: pandas: a foundational python library for data analysis and statistics. Python High Perform. Sci. Comput. 14(9), 1–9 (2011)

    MATH  Google Scholar 

  18. Mykoniatis, K., Harris, G.A.: A digital twin emulator of a modular production system using a data driven hybrid modeling and simulation approach. J. Intell. Manuf. 32(7), 1899–1911 (2021)

    Article  MATH  Google Scholar 

  19. Rausch, T., Nastic, S., Dustdar, S.: Emma: distributed QoS aware MQTT middleware for edge computing applications. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 191–197. IEEE (2018)

    Google Scholar 

  20. Reifsnider, K., Majumdar, P.: Multiphysics stimulated simulation digital twin methods for fleet management. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1578 (2013)

    Google Scholar 

  21. Rosen, R., Von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. IFAC-Papersonline 48(3), 567–572 (2015)

    Article  Google Scholar 

  22. Schroeder, G.N., Steinmetz, C., Rodrigues, R.N., Henriques, R.V.B., Rettberg, A., Pereira, C.E.: A methodology for digital twin modeling and deployment for industry 4.0. Proc. IEEE 109(4), 556–567 (2020)

    Google Scholar 

  23. Seabold, S., Perktold, J.: Statsmodels: econometric and statistical modeling with python. SciPy 7, 1 (2010)

    MATH  Google Scholar 

  24. Segovia, M., Garcia-Alfaro, J.: Design, modeling and implementation of digital twins. Sensors 22(14), 5396 (2022)

    Article  MATH  Google Scholar 

  25. Stary, C., Elstermann, M., Fleischmann, A., Schmidt, W.: Behavior centered digital twin design for dynamic cyber physical system development. Complex Syst. Inform. Model. Q. (CSIMQ) 30, 31–52 (2022)

    Article  MATH  Google Scholar 

  26. Van Rossum, G., et al.: Python programming language. In: USENIX Annual Technical Conference, vol. 41, pp. 1–36. Santa Clara, CA (2007)

    Google Scholar 

Download references

Acknowledgments

The authors express their sincere appreciation for the financial of the MINISTRY OF SCIENCE AND INNOVATION (FPU17/04636). This work was partially supported with grant PID2021-1236730B-C31 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way making Europe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gabriela Juarez Juarez .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Juarez Juarez, M.G., Giret, A., Botti, V. (2025). Improving Assembly Lines with Digital Twins: A Synthetic Case Study. In: Correia, L., Rosá, A., Garijo, F. (eds) Advances in Artificial Intelligence – IBERAMIA 2024. IBERAMIA 2024. Lecture Notes in Computer Science, vol 15277. Springer, Cham. https://doi.org/10.1007/978-3-031-80366-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80366-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80365-9

  • Online ISBN: 978-3-031-80366-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics