Skip to main content

An Inventory Management Support Tool Through Indirect Q-Value Estimation: A Combined Optimization and Forecasting Approach

  • Conference paper
  • First Online:
Innovative Intelligent Industrial Production and Logistics (IN4PL 2024)

Abstract

Effective inventory management is crucial in manufacturing and wholesale businesses to reduce operation costs and meet service level guarantees. Due to the continuous increase in product catalogues and highly volatile demand, inventory management complexity continues to grow. This paper introduces a decision support tool designed to aid in inventory management through an indirect Q-value estimator technique. The proposed tool employs simulation, optimization and forecasting techniques to enable purchase actions evaluation for large horizons. By integrating both simulation and optimization into a supervised learning algorithm, the tool provides an easy to interpret cost estimation that can directly be used to make informed procurement decisions. A case study in the textile industry demonstrates its use and its performance in a single-echelon supply chain setting. This research presents a comprehensive step by step framework to support the creation of a decision support tool that can offer valuable aid for decision-making processes across different supply management contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abolghasemi, M., Abbasi, B., HosseiniFard, Z.: Machine learning for satisficing operational decision making: a case study in blood supply chain. Int. J. Forecast. (2023). https://doi.org/10.1016/j.ijforecast.2023.05.004

  2. Ahakonye, L.A.C., Zainudin, A., Shanto, M.J.A., Lee, J.M., Kim, D.S., Jun, T.: A multi-MLP prediction for inventory management in manufacturing execution system. Internet Things 26, 101156 (2024). https://doi.org/10.1016/j.iot.2024.101156

    Article  Google Scholar 

  3. Ahmed, U., Mahmood, A., Tunio, M.A., Hafeez, G., Khan, A.R., Razzaq, S.: Investigating boosting techniques’ efficacy in feature selection: a comparative analysis. Energy Rep. 11, 3521–3532 (2024). https://doi.org/10.1016/j.egyr.2024.03.020

    Article  Google Scholar 

  4. Bertsekas, D.: A Course in Reinforcement Learning. Athena Scientific, 1 edn. (2023)

    Google Scholar 

  5. Beutel, A.L., Minner, S.: Safety stock planning under causal demand forecasting. Int. J. Prod. Econ. 140(2), 637–645 (2012). https://doi.org/10.1016/j.ijpe.2011.04.017

    Article  MATH  Google Scholar 

  6. Blackhurst, J., Rungtusanatham, M.J., Scheibe, K., Ambulkar, S.: Supply chain vulnerability assessment: a network based visualization and clustering analysis approach. J. Purch. Supply Manag. 24(1), 21–30 (2018). https://doi.org/10.1016/j.pursup.2017.10.004

    Article  Google Scholar 

  7. de Castro Moraes, T., Yuan, X.M.: Data-driven solutions for the newsvendor problem: a systematic literature review. In: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, pp. 149–158. Springer (2021)

    Google Scholar 

  8. Doshi-velez, F.: The infinite partially observable Markov decision process. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22. Curran Associates, Inc. (2009)

    Google Scholar 

  9. Giannoccaro, I., Pontrandolfo, P.: Inventory management in supply chains: a reinforcement learning approach. Int. J. Prod. Econ. 78(2), 153–161 (2002). https://doi.org/10.1016/S0925-5273(00)00156-0

    Article  MATH  Google Scholar 

  10. Gijsbrechts, J., Boute, R.N., Van Mieghem, J.A., Zhang, D.J.: Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems. Manuf. Serv. Oper. Manag. 24(3), 1349–1368 (2022). https://doi.org/10.1287/msom.2021.1064

    Article  MATH  Google Scholar 

  11. Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., Shcherbatyi, I.: scikit-optimize/scikit-optimize (2020). https://github.com/scikit-optimize/scikit-optimize

  12. Holsapple, C., Lee-Post, A., Pakath, R.: A unified foundation for business analytics. Decis. Support Syst. 64, 130–141 (2014). https://doi.org/10.1016/j.dss.2014.05.013

    Article  MATH  Google Scholar 

  13. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, vol. 30, pp. 3146–3154 (2017)

    Google Scholar 

  14. Khanorkar, Y., Kane, P.: Selective inventory classification using ABC classification, multi-criteria decision making techniques, and machine learning techniques. Materials Today: Proceedings, 2nd International Conference and Exposition on Advances in Mechanical Engineering (ICoAME 2022), vol. 72, pp. 1270–1274 (2023). https://doi.org/10.1016/j.matpr.2022.09.298

  15. Kosgoda, D., Perera, H.N., Aloysius, J.: Effective goal framing for managers using inventory management systems. Eur. J. Oper. Res. 316(1), 138–151 (2024). https://doi.org/10.1016/j.ejor.2024.01.034

    Article  MATH  Google Scholar 

  16. Madeka, D., Torkkola, K., Eisenach, C., Luo, A., Foster, D.P., Kakade, S.M.: Deep inventory management (2022)

    Google Scholar 

  17. Maheshwari, P., Kamble, S.: The application of supply chain digital twin to measure optimal inventory policy. IFAC-PapersOnLine 55(10), 2324–2329 (2022). https://doi.org/10.1016/j.ifacol.2022.10.055

    Article  MATH  Google Scholar 

  18. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: M5 accuracy competition: results, findings, and conclusions. Int. J. Forecast. 38(4), 1346–1364 (2022). https://doi.org/10.1016/j.ijforecast.2021.11.013

    Article  MATH  Google Scholar 

  19. Panda, S.K., Mohanty, S.N.: Time series forecasting and modeling of food demand supply chain based on regressors analysis. IEEE Access 11, 42679–42700 (2023). https://doi.org/10.1109/ACCESS.2023.3266275

    Article  MATH  Google Scholar 

  20. Porteus, E.: Foundations of Stochastic Inventory Theory. Stanford University Press, 1 edn. (2002)

    Google Scholar 

  21. Ramanathan, R.: ABC inventory classification with multiple-criteria using weighted linear optimization. Comput. Oper. Res. 33(3), 695–700 (2006). https://doi.org/10.1016/j.cor.2004.07.014

    Article  MATH  Google Scholar 

  22. Ren, X., Gong, Y., Rekik, Y., Xu, X.: Data-driven analysis on anticipatory shipping for pickup point inventory. IFAC-PapersOnLine 55(10), 714–718 (2022). https://doi.org/10.1016/j.ifacol.2022.09.491

    Article  MATH  Google Scholar 

  23. St-Aubin, P.: Conception d’un système de gestion de l’inventaire pour un portefeuille de produits à profil de demande mixte, Ph.D. thesis, Polytechnique Montréal (2020)

    Google Scholar 

  24. St-Aubin, P., Agard, B.: Precision and reliability of forecasts performance metrics. Forecasting 4(4), 882–903 (2022). https://doi.org/10.3390/forecast4040048

    Article  MATH  Google Scholar 

  25. Zhang, T., Lauras, M., Zacharewicz, G., Rabah, S., Benaben, F.: Coupling simulation and machine learning for predictive analytics in supply chain management. Int. J. Prod. Res., 1–18 (2024). https://doi.org/10.1080/00207543.2024.2342019

Download references

Acknowledgments

This study was funded by MITACS Acceleration IT 25600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Rodrigues Delfiol .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delfiol, A.R., Dadouchi, C., Agard, B., St-Aubin, P. (2025). An Inventory Management Support Tool Through Indirect Q-Value Estimation: A Combined Optimization and Forecasting Approach. In: Dassisti, M., Madani, K., Panetto, H. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL 2024. Communications in Computer and Information Science, vol 2372. Springer, Cham. https://doi.org/10.1007/978-3-031-80760-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80760-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80759-6

  • Online ISBN: 978-3-031-80760-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics