Abstract
Effective inventory management is crucial in manufacturing and wholesale businesses to reduce operation costs and meet service level guarantees. Due to the continuous increase in product catalogues and highly volatile demand, inventory management complexity continues to grow. This paper introduces a decision support tool designed to aid in inventory management through an indirect Q-value estimator technique. The proposed tool employs simulation, optimization and forecasting techniques to enable purchase actions evaluation for large horizons. By integrating both simulation and optimization into a supervised learning algorithm, the tool provides an easy to interpret cost estimation that can directly be used to make informed procurement decisions. A case study in the textile industry demonstrates its use and its performance in a single-echelon supply chain setting. This research presents a comprehensive step by step framework to support the creation of a decision support tool that can offer valuable aid for decision-making processes across different supply management contexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abolghasemi, M., Abbasi, B., HosseiniFard, Z.: Machine learning for satisficing operational decision making: a case study in blood supply chain. Int. J. Forecast. (2023). https://doi.org/10.1016/j.ijforecast.2023.05.004
Ahakonye, L.A.C., Zainudin, A., Shanto, M.J.A., Lee, J.M., Kim, D.S., Jun, T.: A multi-MLP prediction for inventory management in manufacturing execution system. Internet Things 26, 101156 (2024). https://doi.org/10.1016/j.iot.2024.101156
Ahmed, U., Mahmood, A., Tunio, M.A., Hafeez, G., Khan, A.R., Razzaq, S.: Investigating boosting techniques’ efficacy in feature selection: a comparative analysis. Energy Rep. 11, 3521–3532 (2024). https://doi.org/10.1016/j.egyr.2024.03.020
Bertsekas, D.: A Course in Reinforcement Learning. Athena Scientific, 1 edn. (2023)
Beutel, A.L., Minner, S.: Safety stock planning under causal demand forecasting. Int. J. Prod. Econ. 140(2), 637–645 (2012). https://doi.org/10.1016/j.ijpe.2011.04.017
Blackhurst, J., Rungtusanatham, M.J., Scheibe, K., Ambulkar, S.: Supply chain vulnerability assessment: a network based visualization and clustering analysis approach. J. Purch. Supply Manag. 24(1), 21–30 (2018). https://doi.org/10.1016/j.pursup.2017.10.004
de Castro Moraes, T., Yuan, X.M.: Data-driven solutions for the newsvendor problem: a systematic literature review. In: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, pp. 149–158. Springer (2021)
Doshi-velez, F.: The infinite partially observable Markov decision process. In: Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22. Curran Associates, Inc. (2009)
Giannoccaro, I., Pontrandolfo, P.: Inventory management in supply chains: a reinforcement learning approach. Int. J. Prod. Econ. 78(2), 153–161 (2002). https://doi.org/10.1016/S0925-5273(00)00156-0
Gijsbrechts, J., Boute, R.N., Van Mieghem, J.A., Zhang, D.J.: Can deep reinforcement learning improve inventory management? Performance on lost sales, dual-sourcing, and multi-echelon problems. Manuf. Serv. Oper. Manag. 24(3), 1349–1368 (2022). https://doi.org/10.1287/msom.2021.1064
Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., Shcherbatyi, I.: scikit-optimize/scikit-optimize (2020). https://github.com/scikit-optimize/scikit-optimize
Holsapple, C., Lee-Post, A., Pakath, R.: A unified foundation for business analytics. Decis. Support Syst. 64, 130–141 (2014). https://doi.org/10.1016/j.dss.2014.05.013
Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, vol. 30, pp. 3146–3154 (2017)
Khanorkar, Y., Kane, P.: Selective inventory classification using ABC classification, multi-criteria decision making techniques, and machine learning techniques. Materials Today: Proceedings, 2nd International Conference and Exposition on Advances in Mechanical Engineering (ICoAME 2022), vol. 72, pp. 1270–1274 (2023). https://doi.org/10.1016/j.matpr.2022.09.298
Kosgoda, D., Perera, H.N., Aloysius, J.: Effective goal framing for managers using inventory management systems. Eur. J. Oper. Res. 316(1), 138–151 (2024). https://doi.org/10.1016/j.ejor.2024.01.034
Madeka, D., Torkkola, K., Eisenach, C., Luo, A., Foster, D.P., Kakade, S.M.: Deep inventory management (2022)
Maheshwari, P., Kamble, S.: The application of supply chain digital twin to measure optimal inventory policy. IFAC-PapersOnLine 55(10), 2324–2329 (2022). https://doi.org/10.1016/j.ifacol.2022.10.055
Makridakis, S., Spiliotis, E., Assimakopoulos, V.: M5 accuracy competition: results, findings, and conclusions. Int. J. Forecast. 38(4), 1346–1364 (2022). https://doi.org/10.1016/j.ijforecast.2021.11.013
Panda, S.K., Mohanty, S.N.: Time series forecasting and modeling of food demand supply chain based on regressors analysis. IEEE Access 11, 42679–42700 (2023). https://doi.org/10.1109/ACCESS.2023.3266275
Porteus, E.: Foundations of Stochastic Inventory Theory. Stanford University Press, 1 edn. (2002)
Ramanathan, R.: ABC inventory classification with multiple-criteria using weighted linear optimization. Comput. Oper. Res. 33(3), 695–700 (2006). https://doi.org/10.1016/j.cor.2004.07.014
Ren, X., Gong, Y., Rekik, Y., Xu, X.: Data-driven analysis on anticipatory shipping for pickup point inventory. IFAC-PapersOnLine 55(10), 714–718 (2022). https://doi.org/10.1016/j.ifacol.2022.09.491
St-Aubin, P.: Conception d’un système de gestion de l’inventaire pour un portefeuille de produits à profil de demande mixte, Ph.D. thesis, Polytechnique Montréal (2020)
St-Aubin, P., Agard, B.: Precision and reliability of forecasts performance metrics. Forecasting 4(4), 882–903 (2022). https://doi.org/10.3390/forecast4040048
Zhang, T., Lauras, M., Zacharewicz, G., Rabah, S., Benaben, F.: Coupling simulation and machine learning for predictive analytics in supply chain management. Int. J. Prod. Res., 1–18 (2024). https://doi.org/10.1080/00207543.2024.2342019
Acknowledgments
This study was funded by MITACS Acceleration IT 25600.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Delfiol, A.R., Dadouchi, C., Agard, B., St-Aubin, P. (2025). An Inventory Management Support Tool Through Indirect Q-Value Estimation: A Combined Optimization and Forecasting Approach. In: Dassisti, M., Madani, K., Panetto, H. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL 2024. Communications in Computer and Information Science, vol 2372. Springer, Cham. https://doi.org/10.1007/978-3-031-80760-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-80760-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-80759-6
Online ISBN: 978-3-031-80760-2
eBook Packages: Computer ScienceComputer Science (R0)