Abstract
Although data-driven artificial intelligence (AI) is increasingly applied in decision-making, challenges such as a lack of explainability and trust limit its integration in enterprise decisandrisks.Keytaion-making processes. Establishing a minimum level of common information sharing and trust among decision-making stakeholders, often termed as decisional interoperability, is needed for industry adoption. Purely data-driven approaches risk ignoring the enterprise environment and situational context of decisions and are insufficient for such interoperability to the extent that the decision-making rationale is opaque. While linked data and knowledge approaches have long been pursued in the context of data-driven machine learning, these have not been particularly well explored in the context of decisional enterprise interoperability. This paper aims to narrow this gap. It explores how the introduction of AI is changing decisional interoperability concerns. It then outlines patterns of human-AI teaming in decision-making, as well as methods, such as knowledge-infused AI and mechanisms, such as active learning, for enhancing decisional interoperability. Three diverse application domain-cases offer context for an analysis of AI decision-making considerations and decisional interoperability. The paper concludes with arguments about how integration of knowledge into data-driven AI contributes to decisional interoperability and further work needed in this area.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Gao, R.X., Krüger, J., Merklein, M., Möhring, H.C., Váncza, J.: Artificial intelligence in manufacturing: state of the art, perspectives, and future directions. CIRP Ann. 73, 723–749 (2024). https://doi.org/10.1016/j.cirp.2024.04.101
Subramania, H.S., Khare, V.R.: Pattern classification driven enhancements for human-in-the-loop decision support systems. Decis. Support. Syst. 50, 460–468 (2011). https://doi.org/10.1016/j.dss.2010.11.003
Ivanov, S.H.: Automated decision-making. Foresight 25, 4–19 (2023). https://doi.org/10.1108/FS-09-2021-0183
Daclin, N., Chen, D., Vallespir, B.: Decisional interoperability. In: Archimède, B., Vallespir, B. (eds.) Enterprise Interoperability: INTEROP-PGSO Vision, pp. 121–140. John Wiley and Sons, Hoboken (2017)
Angwin, J., Larson, J., Mattu, S.: Machine Bias — ProPublica. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Assessed 21 October 2024
Rawal, A., McCoy, J., Rawat, D.B., Sadler, B.M., Amant, R.S.: Recent advances in trustworthy explainable artificial intelligence: status, challenges, and perspectives. IEEE Trans. AI 3(6), 852–866 (2022). https://doi.org/10.1109/TAI.2021.3133846
Hamon, R., Junklewitz, H., Sanchez, I., Malgieri, G., De Hert, P.: Bridging the gap between AI and explainability in the GDPR: towards trustworthiness-by-design in automated decision-making. IEEE Comput. Intell. Mag. 17, 72–85 (2022). https://doi.org/10.1109/MCI.2021.3129960
Bach, T.A., Khan, A., Hallock, H., Beltrão, G., Sousa, S.: A systematic literature review of user trust in AI-enabled systems: an HCI perspective. Int. J. Hum. Computss. Interact. (2022). https://doi.org/10.1080/10447318.2022.2138826
Tahtali, M.A., Snijders, C., Dirne, C.: Trust in algorithmic advice increases with task complexity. In: Baratgin, J., Jacquet, B., Yama, H. (eds.) Human and Artificial Rationalities, HAR 2023. LNCS, vol. 14522, pp. 86–106. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-55245-8_6
Schoenherr, J.R., Abbas, R., Michael, K., Rivas, P., Anderson, T.D.: Designing AI using a human-centered approach: explainability and accuracy toward trustworthiness. IEEE Trans. Technol. Soc. 4, 9–23 (2023). https://doi.org/10.1109/tts.2023.3257627
Zhou, J., Joachims, T.: How to explain and justify almost any decision: potential pitfalls for accountability in AI decision-making. In: ACM International Conference Proceeding Series, pp. 12–21. Association for Computing Machinery (2023). https://doi.org/10.1145/3593013.3593972
ISO/IEC TS 5723: Trustworthiness - Vocabulary (2022)
Rogova, G.L.: Information quality in fusion-driven human-machine environments. In: Bossé, É., Rogova, G. (eds.) Information Quality in Information Fusion and Decision Making. IFDS, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03643-0_1
Emmanouilidis, C., et al.: Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems. Annu. Rev. Control. 47, 249–265 (2019). https://doi.org/10.1016/j.arcontrol.2019.03.004
Rožanec, J.M., Trajkova, E., Dam, P., Fortuna, B., Mladenić, D.: Streaming machine learning and online active learning for automated visual inspection. IFAC-PapersOnLine 55, 277–282 (2022). https://doi.org/10.1016/j.ifacol.2022.04.206
Sheth, A., Gaur, M., Roy, K., Venkataraman, R., Khandelwal, V.: Process knowledge-infused AI: toward user-level explainability, interpretability, and safety. IEEE Internet Comput. 26, 76–84 (2022). https://doi.org/10.1109/MIC.2022.3182349
Daclin, N., Chen, D., Vallespir, B.: Decisional interoperability: concepts and formalisation. In: Camarinlia-Matos, L.M., Afsarmanesh, H., Ollus, M. (eds.) Network-Centric Collaboration and Supporting Frameworks, PRO-VE 2006. IFIPAICT, vol. 224, pp. 297–304. Springer, Boston, MA (2006). https://doi.org/10.1007/978-0-387-38269-2_31
Salas, E., Rosen, M.A., DiazGranados, D.: Expertise-based intuition and decision making in organizations. J. Manage. 36, 941–973 (2010). https://doi.org/10.1177/0149206309350084
Evans, J.S.B.T.: Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol. 59, 255–278 (2008). https://doi.org/10.1146/annurev.psych.59.103006.093629
Steyvers, M., Kumar, A.: Three challenges for AI-assisted decision-making. Perspect. Psychol. Sci. (2023). https://doi.org/10.1177/17456916231181102
NIST: Artificial Intelligence Risk Management Framework (AI RMF 1.0) (2023). https://doi.org/10.6028/NIST.AI.100-1
ISO: Information technology — Artificial intelligence — Guidance on risk management (2023)
Futia, G., Vetrò, A.: On the integration of knowledge graphs into deep learning models for a more comprehensible AI-Three challenges for future research. Information 11(2), 122 (2020). https://doi.org/10.3390/info11020122
Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M.K., Zhou, L.: Neuro-symbolic approaches in artificial intelligence. Natl. Sci. Rev. 9 (2022). https://doi.org/10.1093/nsr/nwac035
Hafidi, M.M., Djezzar, M., Hemam, M., Amara, F.Z., Maimour, M.: Semantic web and machine learning techniques addressing semantic interoperability in Industry 4.0. Int. J. Web Inf. Sys. 19(3/4), 157–172 (2023). https://doi.org/10.1108/IJWIS-03-2023-0046
El-Nouty, C., Filatova, D.: The learning model for data-driven decision making of collaborating enterprises. In: Baratgin, J., Jacquet, B., Yama, H. (eds.) Human and Artificial Rationalities, HAR 2023. LNCS, vol. 14522, pp. 345–356. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-55245-8_22
George, J.M., Dane, E.: Affect, emotion, and decision making. Organ. Behav. Hum. Decis. Process. 136, 47–55 (2016). https://doi.org/10.1016/j.obhdp.2016.06.004
Doya, K.: Modulators of decision making. Nat. Neurosci. 11, 410–416 (2008). https://doi.org/10.1038/nn2077
Duncan, R.B.: Characteristics of organizational environments and perceived environmental uncertainty. Admin. Sci. Q. 17(3), 313–327 (1972)
Alufaisan, Y., Marusich, L.R., Bakdash, J.Z., Zhou, Y., Kantarcioglu, M.: Does explainable artificial intelligence improve human decision-making? In: Proceedings of the 35th AAAI Conferfence (2021)
Buçinca, Z., Malaya, M.B., Gajos, K.Z.: To trust or to think: cognitive forcing functions can reduce overreliance on AI in AI-assisted decision-making. Proc. ACM Hum. Comput. Interact. 5 (2021). https://doi.org/10.1145/3449287
Chen, V., Liao, Q.V., Vaughan, J.W., Bansal, G.: Understanding the role of human intuition on reliance in human-AI decision-making with explanations. Proc. ACM Hum. Comput. Interact. 7(CSCW2). 370(1–32) (2023). https://doi.org/10.1145/3610219
Bigman, Y.E., Gray, K.: Running head: people are averse to machines making moral decisions people are averse to machines making moral decisions. Cognition 181, 21–34 (2018). https://doi.org/10.1016/j.cognition.2018.08.003
Storey, V.C., Hevner, A.R., Yoon, V.Y.: The design of human-artificial intelligence systems in decision sciences: a look back and directions forward. Decis. Support Syst. 182 (2024). https://doi.org/10.1016/j.dss.2024.114230
Kiam, J.J., Dudek, M., Schulte, A.: Anticipating human decision for an optimal teaming between manned and unmanned systems. In: Russo, D., Ahram, T., Karwowski, W., Di Bucchianico, G., Taiar, R. (eds.) Intelligent Human Systems Integration 2021, IHSI 2021. AISC, vol. 1322, pp. 3–9. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68017-6_1
Lai, V., Chen, C., Smith-Renner, A., Liao, Q.V., Tan, C.: Towards a science of human-AI decision making: an overview of design space in empirical human-subject studies. In: ACM International Conference Proceeding Series, pp. 1369–1385. Association for Computing Machinery (2023). https://doi.org/10.1145/3593013.3594087
Leyer, M., Schneider, S.: Decision augmentation and automation with artificial intelligence: threat or opportunity for managers? Bus. Horiz. 64, 711–724 (2021). https://doi.org/10.1016/j.bushor.2021.02.026
Munyaka, I., Ashktorab, Z., Dugan, C., Johnson, J., Pan, Q.: Decision making strategies and team efficacy in human-AI teams. Proc. ACM Hum. Comput. Interact. 7 (2023). https://doi.org/10.1145/3579476
Bao, Y., Gong, W., Yang, K.: A literature review of human–AI synergy in decision making: from the perspective of affordance actualization theory. Systems 11(9), 442 (2023). https://doi.org/10.3390/systems11090442
Emmanouilidis, C., Waschull, S., Bokhorst, J.A.C., Wortmann, J.C.: Human in the AI loop in production environments. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, APMS 2021. IFIPAICT, vol. 633, pp. 331–342. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85910-7_35
Nilsson, J., Sandin, F.: Semantic interoperability in Industry 4.0: survey of recent developments and outlook. In: International Conference on Industrial Informatics, pp. 127–132. IEEE (2018)
Petnga, L., Austin, M.: An ontological framework for knowledge modeling and decision support in cyber-physical systems. Adv. Eng. Inform. 30, 77–94 (2016). https://doi.org/10.1016/j.aei.2015.12.003
Ghidalia, S., Narsis, O.L., Bertaux, A., Nicolle, C.: Combining Machine Learning and Ontology: A Systematic Literature Review (2024). arXiv arXiv:2401.07744
Hogan, A., et al.: Knowledge Graphs. Springer Nature (2021)
Tiddi, I., Schlobach, S.: Knowledge graphs as tools for explainable machine learning: a survey. Artif. Intell. 302 (2022). https://doi.org/10.1016/j.artint.2021.103627
Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62, 36–43 (2019). https://doi.org/10.1145/3331166
McKenna, N., Li, T., Cheng, L., Hosseini, M.J., Johnson, M., Steedman, M.: Sources of hallucination by large language models on inference tasks. In: EMNLP 2023, pp. 2758–2774 (2023). arXiv arXiv:2305.14552
Zafar, A., Parthasarathy, V.B., Van, C.L., Shahid, S., Khan, A.I., Shahid, A.: Building trust in conversational AI: a comprehensive review and solution architecture for explainable, privacy-aware systems using LLMs and knowledge graph. Big Data Cogn. Comput. 8(6), 70 (2024). https://doi.org/10.3390/bdcc8060070
Yang, L., Chen, H., Li, Z., Ding, X., Wu, X.: Give us the facts: enhancing large language models with knowledge graphs for fact-aware language modeling. arXiv arXiv:2306.11489 (2023)
Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor networks. Artif. Intell. 303 (2022). https://doi.org/10.1016/j.artint.2021.103649
Riegel, R., et al.: Logical Neural Networks (2020). arXiv:2006.13155
Pryor, C., Dickens, C., Augustine, E., Albalak, A., Wang, W., Getoor, L.: NeuPSL: neural probabilistic soft logic. In: Proceedings of the IJCAI 2023, vol. 461, pp. 4145–4153 (2022). https://doi.org/10.24963/ijcai.2023/461
Yang, Z., Ishay, A., Lee, J.: NeurASP: Embracing neural networks into answer set programming. In: Proceedings of the IJCAI 2020, vol. 243, p. 175501762 (2023). https://doi.org/10.24963/ijcai.2020/243
Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2005)
Waschull, S., Emmanouilidis, C.: Assessing human-centricity in AI-enabled manufacturing systems: a socio-technical evaluation methodology. IFAC-PapersOnLine 56(2), 1791–1796 (2023). https://doi.org/10.1016/j.ifacol.2023.10.1891
Waschull, S., Emmanouilidis, C.: Development and application ofa human-centric co-creation design method for AI-enabled systems in manufacturing. IFAC-PapersOnLine 55(2), 516–521 (2022). https://doi.org/10.1016/j.ifacol.2022.04.246
Zhang, A., Walker, O., Nguyen, K., Dai, J., Chen, A., Lee, M.K.: Deliberating with AI: improving decision-making for the future through participatory AI design and stakeholder deliberation. Proc. ACM Hum. Comput. Interact. 7, 1–32 (2023). https://doi.org/10.1145/3579601
Sanders, E.B.-N., Stappers, P.J.: Co-creation and the new landscapes of design. CoDesign 4, 5–18 (2008). https://doi.org/10.1080/15710880701875068
Storvang, P., Mortensen, B., Clarke, A.H.: Using workshops in business research: a framework to diagnose, plan, facilitate and analyze workshops. In: Freytag, P., Young, L. (eds.) Collaborative Research Design, pp. 155–174. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5008-4_7
Rußkamp, N., Digmayer, C., Jakobs, E.-M.: Co-creation-based framework for the agile development of AI-supported CAM systems. In: Human Aspects of Advanced Manufacturing. AHFE International (2023). https://doi.org/10.54941/ahfe1003507
Guha, S., Mungala, K.: Approximation algorithms for budgeted learning problems. In: STOC ’07: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 104–113. ACM Digital Library (2007). https://doi.org/10.1145/1250790.125080
Acknowledgements
The research was supported through grant ID 101120218 (HumAIne). Collaboration with all project partners, especially via co-creation workshops, is acknowledged.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Ethics declarations
Authors have no competing interests that are relevant to this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Emmanouilidis, C., Waschull, S., Zotelli, J. (2025). Integrating Knowledge and Data-Driven Artificial Intelligence for Decisional Enterprise Interoperability. In: Dassisti, M., Madani, K., Panetto, H. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL 2024. Communications in Computer and Information Science, vol 2373. Springer, Cham. https://doi.org/10.1007/978-3-031-80775-6_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-80775-6_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-80774-9
Online ISBN: 978-3-031-80775-6
eBook Packages: Computer ScienceComputer Science (R0)