Skip to main content

Integrating Knowledge and Data-Driven Artificial Intelligence for Decisional Enterprise Interoperability

  • Conference paper
  • First Online:
Innovative Intelligent Industrial Production and Logistics (IN4PL 2024)

Abstract

Although data-driven artificial intelligence (AI) is increasingly applied in decision-making, challenges such as a lack of explainability and trust limit its integration in enterprise decisandrisks.Keytaion-making processes. Establishing a minimum level of common information sharing and trust among decision-making stakeholders, often termed as decisional interoperability, is needed for industry adoption. Purely data-driven approaches risk ignoring the enterprise environment and situational context of decisions and are insufficient for such interoperability to the extent that the decision-making rationale is opaque. While linked data and knowledge approaches have long been pursued in the context of data-driven machine learning, these have not been particularly well explored in the context of decisional enterprise interoperability. This paper aims to narrow this gap. It explores how the introduction of AI is changing decisional interoperability concerns. It then outlines patterns of human-AI teaming in decision-making, as well as methods, such as knowledge-infused AI and mechanisms, such as active learning, for enhancing decisional interoperability. Three diverse application domain-cases offer context for an analysis of AI decision-making considerations and decisional interoperability. The paper concludes with arguments about how integration of knowledge into data-driven AI contributes to decisional interoperability and further work needed in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, R.X., Krüger, J., Merklein, M., Möhring, H.C., Váncza, J.: Artificial intelligence in manufacturing: state of the art, perspectives, and future directions. CIRP Ann. 73, 723–749 (2024). https://doi.org/10.1016/j.cirp.2024.04.101

    Article  Google Scholar 

  2. Subramania, H.S., Khare, V.R.: Pattern classification driven enhancements for human-in-the-loop decision support systems. Decis. Support. Syst. 50, 460–468 (2011). https://doi.org/10.1016/j.dss.2010.11.003

    Article  MATH  Google Scholar 

  3. Ivanov, S.H.: Automated decision-making. Foresight 25, 4–19 (2023). https://doi.org/10.1108/FS-09-2021-0183

    Article  MATH  Google Scholar 

  4. Daclin, N., Chen, D., Vallespir, B.: Decisional interoperability. In: Archimède, B., Vallespir, B. (eds.) Enterprise Interoperability: INTEROP-PGSO Vision, pp. 121–140. John Wiley and Sons, Hoboken (2017)

    Google Scholar 

  5. Angwin, J., Larson, J., Mattu, S.: Machine Bias — ProPublica. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Assessed 21 October 2024

  6. Rawal, A., McCoy, J., Rawat, D.B., Sadler, B.M., Amant, R.S.: Recent advances in trustworthy explainable artificial intelligence: status, challenges, and perspectives. IEEE Trans. AI 3(6), 852–866 (2022). https://doi.org/10.1109/TAI.2021.3133846

  7. Hamon, R., Junklewitz, H., Sanchez, I., Malgieri, G., De Hert, P.: Bridging the gap between AI and explainability in the GDPR: towards trustworthiness-by-design in automated decision-making. IEEE Comput. Intell. Mag. 17, 72–85 (2022). https://doi.org/10.1109/MCI.2021.3129960

    Article  Google Scholar 

  8. Bach, T.A., Khan, A., Hallock, H., Beltrão, G., Sousa, S.: A systematic literature review of user trust in AI-enabled systems: an HCI perspective. Int. J. Hum. Computss. Interact. (2022). https://doi.org/10.1080/10447318.2022.2138826

    Article  Google Scholar 

  9. Tahtali, M.A., Snijders, C., Dirne, C.: Trust in algorithmic advice increases with task complexity. In: Baratgin, J., Jacquet, B., Yama, H. (eds.) Human and Artificial Rationalities, HAR 2023. LNCS, vol. 14522, pp. 86–106. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-55245-8_6

  10. Schoenherr, J.R., Abbas, R., Michael, K., Rivas, P., Anderson, T.D.: Designing AI using a human-centered approach: explainability and accuracy toward trustworthiness. IEEE Trans. Technol. Soc. 4, 9–23 (2023). https://doi.org/10.1109/tts.2023.3257627

    Article  Google Scholar 

  11. Zhou, J., Joachims, T.: How to explain and justify almost any decision: potential pitfalls for accountability in AI decision-making. In: ACM International Conference Proceeding Series, pp. 12–21. Association for Computing Machinery (2023). https://doi.org/10.1145/3593013.3593972

  12. ISO/IEC TS 5723: Trustworthiness - Vocabulary (2022)

    Google Scholar 

  13. Rogova, G.L.: Information quality in fusion-driven human-machine environments. In: Bossé, É., Rogova, G. (eds.) Information Quality in Information Fusion and Decision Making. IFDS, pp. 3–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03643-0_1

  14. Emmanouilidis, C., et al.: Enabling the human in the loop: linked data and knowledge in industrial cyber-physical systems. Annu. Rev. Control. 47, 249–265 (2019). https://doi.org/10.1016/j.arcontrol.2019.03.004

    Article  MATH  Google Scholar 

  15. Rožanec, J.M., Trajkova, E., Dam, P., Fortuna, B., Mladenić, D.: Streaming machine learning and online active learning for automated visual inspection. IFAC-PapersOnLine 55, 277–282 (2022). https://doi.org/10.1016/j.ifacol.2022.04.206

    Article  Google Scholar 

  16. Sheth, A., Gaur, M., Roy, K., Venkataraman, R., Khandelwal, V.: Process knowledge-infused AI: toward user-level explainability, interpretability, and safety. IEEE Internet Comput. 26, 76–84 (2022). https://doi.org/10.1109/MIC.2022.3182349

    Article  Google Scholar 

  17. Daclin, N., Chen, D., Vallespir, B.: Decisional interoperability: concepts and formalisation. In: Camarinlia-Matos, L.M., Afsarmanesh, H., Ollus, M. (eds.) Network-Centric Collaboration and Supporting Frameworks, PRO-VE 2006. IFIPAICT, vol. 224, pp. 297–304. Springer, Boston, MA (2006). https://doi.org/10.1007/978-0-387-38269-2_31

  18. Salas, E., Rosen, M.A., DiazGranados, D.: Expertise-based intuition and decision making in organizations. J. Manage. 36, 941–973 (2010). https://doi.org/10.1177/0149206309350084

    Article  Google Scholar 

  19. Evans, J.S.B.T.: Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol. 59, 255–278 (2008). https://doi.org/10.1146/annurev.psych.59.103006.093629

    Article  MATH  Google Scholar 

  20. Steyvers, M., Kumar, A.: Three challenges for AI-assisted decision-making. Perspect. Psychol. Sci. (2023). https://doi.org/10.1177/17456916231181102

    Article  MATH  Google Scholar 

  21. NIST: Artificial Intelligence Risk Management Framework (AI RMF 1.0) (2023). https://doi.org/10.6028/NIST.AI.100-1

  22. ISO: Information technology — Artificial intelligence — Guidance on risk management (2023)

    Google Scholar 

  23. Futia, G., Vetrò, A.: On the integration of knowledge graphs into deep learning models for a more comprehensible AI-Three challenges for future research. Information 11(2), 122 (2020). https://doi.org/10.3390/info11020122

  24. Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M.K., Zhou, L.: Neuro-symbolic approaches in artificial intelligence. Natl. Sci. Rev. 9 (2022). https://doi.org/10.1093/nsr/nwac035

  25. Hafidi, M.M., Djezzar, M., Hemam, M., Amara, F.Z., Maimour, M.: Semantic web and machine learning techniques addressing semantic interoperability in Industry 4.0. Int. J. Web Inf. Sys. 19(3/4), 157–172 (2023). https://doi.org/10.1108/IJWIS-03-2023-0046

  26. El-Nouty, C., Filatova, D.: The learning model for data-driven decision making of collaborating enterprises. In: Baratgin, J., Jacquet, B., Yama, H. (eds.) Human and Artificial Rationalities, HAR 2023. LNCS, vol. 14522, pp. 345–356. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-55245-8_22

  27. George, J.M., Dane, E.: Affect, emotion, and decision making. Organ. Behav. Hum. Decis. Process. 136, 47–55 (2016). https://doi.org/10.1016/j.obhdp.2016.06.004

    Article  MATH  Google Scholar 

  28. Doya, K.: Modulators of decision making. Nat. Neurosci. 11, 410–416 (2008). https://doi.org/10.1038/nn2077

    Article  Google Scholar 

  29. Duncan, R.B.: Characteristics of organizational environments and perceived environmental uncertainty. Admin. Sci. Q. 17(3), 313–327 (1972)

    Google Scholar 

  30. Alufaisan, Y., Marusich, L.R., Bakdash, J.Z., Zhou, Y., Kantarcioglu, M.: Does explainable artificial intelligence improve human decision-making? In: Proceedings of the 35th AAAI Conferfence (2021)

    Google Scholar 

  31. Buçinca, Z., Malaya, M.B., Gajos, K.Z.: To trust or to think: cognitive forcing functions can reduce overreliance on AI in AI-assisted decision-making. Proc. ACM Hum. Comput. Interact. 5 (2021). https://doi.org/10.1145/3449287

  32. Chen, V., Liao, Q.V., Vaughan, J.W., Bansal, G.: Understanding the role of human intuition on reliance in human-AI decision-making with explanations. Proc. ACM Hum. Comput. Interact. 7(CSCW2). 370(1–32) (2023). https://doi.org/10.1145/3610219

  33. Bigman, Y.E., Gray, K.: Running head: people are averse to machines making moral decisions people are averse to machines making moral decisions. Cognition 181, 21–34 (2018). https://doi.org/10.1016/j.cognition.2018.08.003

  34. Storey, V.C., Hevner, A.R., Yoon, V.Y.: The design of human-artificial intelligence systems in decision sciences: a look back and directions forward. Decis. Support Syst. 182 (2024). https://doi.org/10.1016/j.dss.2024.114230

  35. Kiam, J.J., Dudek, M., Schulte, A.: Anticipating human decision for an optimal teaming between manned and unmanned systems. In: Russo, D., Ahram, T., Karwowski, W., Di Bucchianico, G., Taiar, R. (eds.) Intelligent Human Systems Integration 2021, IHSI 2021. AISC, vol. 1322, pp. 3–9. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68017-6_1

  36. Lai, V., Chen, C., Smith-Renner, A., Liao, Q.V., Tan, C.: Towards a science of human-AI decision making: an overview of design space in empirical human-subject studies. In: ACM International Conference Proceeding Series, pp. 1369–1385. Association for Computing Machinery (2023). https://doi.org/10.1145/3593013.3594087

  37. Leyer, M., Schneider, S.: Decision augmentation and automation with artificial intelligence: threat or opportunity for managers? Bus. Horiz. 64, 711–724 (2021). https://doi.org/10.1016/j.bushor.2021.02.026

    Article  Google Scholar 

  38. Munyaka, I., Ashktorab, Z., Dugan, C., Johnson, J., Pan, Q.: Decision making strategies and team efficacy in human-AI teams. Proc. ACM Hum. Comput. Interact. 7 (2023). https://doi.org/10.1145/3579476

  39. Bao, Y., Gong, W., Yang, K.: A literature review of human–AI synergy in decision making: from the perspective of affordance actualization theory. Systems 11(9), 442 (2023). https://doi.org/10.3390/systems11090442

  40. Emmanouilidis, C., Waschull, S., Bokhorst, J.A.C., Wortmann, J.C.: Human in the AI loop in production environments. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems, APMS 2021. IFIPAICT, vol. 633, pp. 331–342. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85910-7_35

  41. Nilsson, J., Sandin, F.: Semantic interoperability in Industry 4.0: survey of recent developments and outlook. In: International Conference on Industrial Informatics, pp. 127–132. IEEE (2018)

    Google Scholar 

  42. Petnga, L., Austin, M.: An ontological framework for knowledge modeling and decision support in cyber-physical systems. Adv. Eng. Inform. 30, 77–94 (2016). https://doi.org/10.1016/j.aei.2015.12.003

    Article  MATH  Google Scholar 

  43. Ghidalia, S., Narsis, O.L., Bertaux, A., Nicolle, C.: Combining Machine Learning and Ontology: A Systematic Literature Review (2024). arXiv arXiv:2401.07744

  44. Hogan, A., et al.: Knowledge Graphs. Springer Nature (2021)

    Google Scholar 

  45. Tiddi, I., Schlobach, S.: Knowledge graphs as tools for explainable machine learning: a survey. Artif. Intell. 302 (2022). https://doi.org/10.1016/j.artint.2021.103627

  46. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62, 36–43 (2019). https://doi.org/10.1145/3331166

    Article  Google Scholar 

  47. McKenna, N., Li, T., Cheng, L., Hosseini, M.J., Johnson, M., Steedman, M.: Sources of hallucination by large language models on inference tasks. In: EMNLP 2023, pp. 2758–2774 (2023). arXiv arXiv:2305.14552

  48. Zafar, A., Parthasarathy, V.B., Van, C.L., Shahid, S., Khan, A.I., Shahid, A.: Building trust in conversational AI: a comprehensive review and solution architecture for explainable, privacy-aware systems using LLMs and knowledge graph. Big Data Cogn. Comput. 8(6), 70 (2024). https://doi.org/10.3390/bdcc8060070

  49. Yang, L., Chen, H., Li, Z., Ding, X., Wu, X.: Give us the facts: enhancing large language models with knowledge graphs for fact-aware language modeling. arXiv arXiv:2306.11489 (2023)

  50. Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor networks. Artif. Intell. 303 (2022). https://doi.org/10.1016/j.artint.2021.103649

  51. Riegel, R., et al.: Logical Neural Networks (2020). arXiv:2006.13155

  52. Pryor, C., Dickens, C., Augustine, E., Albalak, A., Wang, W., Getoor, L.: NeuPSL: neural probabilistic soft logic. In: Proceedings of the IJCAI 2023, vol. 461, pp. 4145–4153 (2022). https://doi.org/10.24963/ijcai.2023/461

  53. Yang, Z., Ishay, A., Lee, J.: NeurASP: Embracing neural networks into answer set programming. In: Proceedings of the IJCAI 2020, vol. 243, p. 175501762 (2023). https://doi.org/10.24963/ijcai.2020/243

  54. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, New York (2005)

    MATH  Google Scholar 

  55. Waschull, S., Emmanouilidis, C.: Assessing human-centricity in AI-enabled manufacturing systems: a socio-technical evaluation methodology. IFAC-PapersOnLine 56(2), 1791–1796 (2023). https://doi.org/10.1016/j.ifacol.2023.10.1891

  56. Waschull, S., Emmanouilidis, C.: Development and application ofa human-centric co-creation design method for AI-enabled systems in manufacturing. IFAC-PapersOnLine 55(2), 516–521 (2022). https://doi.org/10.1016/j.ifacol.2022.04.246

  57. Zhang, A., Walker, O., Nguyen, K., Dai, J., Chen, A., Lee, M.K.: Deliberating with AI: improving decision-making for the future through participatory AI design and stakeholder deliberation. Proc. ACM Hum. Comput. Interact. 7, 1–32 (2023). https://doi.org/10.1145/3579601

    Article  Google Scholar 

  58. Sanders, E.B.-N., Stappers, P.J.: Co-creation and the new landscapes of design. CoDesign 4, 5–18 (2008). https://doi.org/10.1080/15710880701875068

    Article  MATH  Google Scholar 

  59. Storvang, P., Mortensen, B., Clarke, A.H.: Using workshops in business research: a framework to diagnose, plan, facilitate and analyze workshops. In: Freytag, P., Young, L. (eds.) Collaborative Research Design, pp. 155–174. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5008-4_7

  60. Rußkamp, N., Digmayer, C., Jakobs, E.-M.: Co-creation-based framework for the agile development of AI-supported CAM systems. In: Human Aspects of Advanced Manufacturing. AHFE International (2023). https://doi.org/10.54941/ahfe1003507

  61. Guha, S., Mungala, K.: Approximation algorithms for budgeted learning problems. In: STOC ’07: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 104–113. ACM Digital Library (2007). https://doi.org/10.1145/1250790.125080

Download references

Acknowledgements

The research was supported through grant ID 101120218 (HumAIne). Collaboration with all project partners, especially via co-creation workshops, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christos Emmanouilidis or Sabine Waschull .

Editor information

Editors and Affiliations

Ethics declarations

Authors have no competing interests that are relevant to this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emmanouilidis, C., Waschull, S., Zotelli, J. (2025). Integrating Knowledge and Data-Driven Artificial Intelligence for Decisional Enterprise Interoperability. In: Dassisti, M., Madani, K., Panetto, H. (eds) Innovative Intelligent Industrial Production and Logistics. IN4PL 2024. Communications in Computer and Information Science, vol 2373. Springer, Cham. https://doi.org/10.1007/978-3-031-80775-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80775-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80774-9

  • Online ISBN: 978-3-031-80775-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics