Skip to main content

Self-supervised Instance Segmentation of Diabetic Foot Ulcers via Feature Correspondence Distillation

  • Conference paper
  • First Online:
Diabetic Foot Ulcers Grand Challenge (DFUC 2024)

Abstract

Diabetic foot ulcers (DFUs) are a serious complication of diabetes that can often lead to infection, amputation, and even death if not properly managed. Accurate segmentation of DFUs in medical images is crucial for effective treatment planning. In the DFUC2024 challenge, which emphasizes self-supervised learning techniques for DFU segmentation, we investigate two approaches. The first approach utilizes a DINO (self-distillation with no labels) model combined with a trainable clustering probe to map unsupervised features into discrete segmentation labels. The second approach involves modifying the STEGO model, specifically designed to distill unsupervised features into meaningful segmentation labels, by integrating self-attention features from the ViT backbone to enhance spatial information. To further improve segmentation accuracy, we propose a coarse-to-fine instance prediction framework, where initial coarse predictions are refined through focused reprocessing of detected ulcer regions. After optimizing the hyperparameters for the DFU dataset, the modified STEGO model achieves a Dice coefficient of 0.4362 and Jaccard coefficient of 0.3358. Although the proposed approach yields competitive results, the challenge of self-supervision in DFU segmentation remains significant. The implementation of this work is available at https://github.com/Wenhui-Zhang-5/DFUC2024-challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brüngel, R., et al.: Diabetic foot ulcer grand challenge 2024: overview and baseline methods. In: Yap, M.H., Kendrick, C., Brüngel, R. (eds.) Diabetic Foot Ulcers Grand Challenge. DFUC 2024, Lecture Notes in Computer Science LNCS, Marrakesh, Morocco, 6–10 October 2024. Springer, Heidelberg (2024)

    Google Scholar 

  2. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  3. Cassidy, B., et al.: The dfuc 2020 dataset: analysis towards diabetic foot ulcer detection. touchREVIEWS Endocrinol. 17, 5–11 (2021). https://doi.org/10.17925/EE.2021.17.1.5. https://www.touchendocrinology.com/diabetes/journal-articles/the-dfuc-2020-dataset-analysis-towards-diabetic-foot-ulcer-detection/1

  4. Cho, J.H., Mall, U., Bala, K., Hariharan, B.: Picie: unsupervised semantic segmentation using invariance and equivariance in clustering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16794–16804 (2021)

    Google Scholar 

  5. Cho, N.H., et al.: IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diab. Res. Clin. Pract. 138, 271–281 (2018)

    Article  MATH  Google Scholar 

  6. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  7. Goyal, M., Yap, M.H., Reeves, N.D., Rajbhandari, S., Spragg, J.: Fully convolutional networks for diabetic foot ulcer segmentation. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 618–623. IEEE (2017)

    Google Scholar 

  8. Hamilton, M., Zhang, Z., Hariharan, B., Snavely, N., Freeman, W.T.: Unsupervised semantic segmentation by distilling feature correspondences. arXiv preprint arXiv:2203.08414 (2022)

  9. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019)

    Google Scholar 

  10. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(11), 4037–4058 (2020)

    Article  MATH  Google Scholar 

  11. Kendrick, C., et al.: Translating clinical delineation of diabetic foot ulcers into machine interpretable segmentation. arXiv preprint arXiv:2204.11618 (2022)

  12. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Proceedings of the 24th International Conference on Neural Information Processing Systems. NIPS 2011, pp. 109–117 (2011)

    Google Scholar 

  13. Liu, Y., Wu, Y.H., Wen, P., Shi, Y., Qiu, Y., Cheng, M.M.: Leveraging instance-, image-and dataset-level information for weakly supervised instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1415–1428 (2020)

    Article  MATH  Google Scholar 

  14. Mamalakis, M., et al.: Deep multi-metric training: the need of multi-metric curve evaluation to avoid weak learning. Neural Comput. Appl. 36, 18841–18862 (2024)

    Article  MATH  Google Scholar 

  15. Pan, S.Y., Lu, C.Y., Lee, S.P., Peng, W.H.: Weakly-supervised image semantic segmentation using graph convolutional networks. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)

    Google Scholar 

  16. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  17. Ren, Z., Yu, Z., Yang, X., Liu, M.-Y., Schwing, A.G., Kautz, J.: UFO\(^2\): a unified framework towards omni-supervised object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 288–313. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_18

    Chapter  MATH  Google Scholar 

  18. Singh, S., Pai, D.R., Yuhhui, C.: Diabetic foot ulcer-diagnosis and management. Clin. Res. Foot Ankle 1(3), 120 (2013)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. NIPS 2017, pp. 6000–6010 (2017)

    Google Scholar 

  20. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  21. Yap, M.H., et al.: Diabetic foot ulcers segmentation challenge report: benchmark and analysis. Med. Image Anal. 94, 103153 (2024)

    Article  MATH  Google Scholar 

  22. Yap, M.H., Cassidy, B., Pappachan, J.M., O’Shea, C., Gillespie, D., Reeves, N.D.: Analysis towards classification of infection and ischaemia of diabetic foot ulcers. In: Proceedings of the IEEE EMBS International Conference on Biomedical and Health Informatics (BHI 2021), pp. 1–4 (2021). https://doi.org/10.1109/BHI50953.2021.9508563

Download references

Acknowledgments

AB is supported by the Royal Society University Research Fellowship (Grant No. URF\(\backslash \)R1\(\backslash \)221314). WZ and SR are supported by EPSRC Impact Acceleration account (Grant No. EP/R511705/1) and the Carnegie Trust of Scotland PhD Scholarships Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhirup Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Banerjee, A., Ray, S. (2025). Self-supervised Instance Segmentation of Diabetic Foot Ulcers via Feature Correspondence Distillation. In: Yap, M.H., Kendrick, C., Brüngel, R. (eds) Diabetic Foot Ulcers Grand Challenge. DFUC 2024. Lecture Notes in Computer Science, vol 15335. Springer, Cham. https://doi.org/10.1007/978-3-031-80871-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80871-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80870-8

  • Online ISBN: 978-3-031-80871-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics