Abstract
Smart bins, equipped with sensors and IoT technologies, play a crucial role in optimizing waste collection by providing real-time data on bin fill levels. This paper introduces a Markovian Agent Model to simulate and evaluate different garbage collection strategies in a smart bin system. By analyzing various alarm thresholds and routing policies, the study identifies optimal approaches for minimizing overflows and enhancing collection efficiency. The results demonstrate that a strategy combining responsive alarm handling with route resumption (Resume policy) and a higher alarm threshold improves system stability and operational effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
The code used in this work is available at https://github.com/EBarbierato/epew2024.
References
Barbierato, E., Bobbio, A., Gribaudo, M., Iacono, M.: Multiformalism to support software rejuvenation modeling. In: 2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops, pp. 271–276. IEEE (2012)
Barbierato, E., Gribaudo, M., Iacono, M.: Modeling hybrid systems in SIMTHESys. Electron. Theor. Comput. Sci. 327, 5–25 (2016)
Barbierato, E., Gribaudo, M., Iacono, M., et al.: A performance modeling language for big data architectures. In: ECMS, pp. 511–517 (2013)
Benarbia, T., Darcherif, A.M., Sun, D.J.: Modelling and performance analysis of smart waste collection system: a petri nets and discrete event simulation approach. Int. J. Decision Supp. Syst. 4(1), 18–40 (2019)
Bobbio, A., Cerotti, D., Gribaudo, M., Iacono, M., Manini, D.: Markovian agent models: a dynamic population of interdependent markovian agents. In: Al-Begain, K., Bargiela, A. (eds.) Seminal Contributions to Modelling and Simulation, pp. 185–203. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-33786-9_13
Gatti, A., Barbierato, E., Pozzi, A.: Toward greener smart cities: A critical review of classic and machine-learning-based algorithms for smart bin collection. Electronics 13(5) (2024). https://doi.org/10.3390/electronics13050836, https://www.mdpi.com/2079-9292/13/5/836
Gribaudo, M., Cerotti, D., Bobbio, A.: Analysis of on-off policies in sensor networks using interacting Markovian agents. In: 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 300–305. IEEE (2008)
Gribaudo, M., Iacono, M., Levis, A.H.: An iot-based monitoring approach for cultural heritage sites: The matera case. Concurr. Comput.: Pract. Exp. 29(11), e4153 (2017)
Huh, J.H., Choi, J.H., Seo, K.: Smart trash bin model design and future for smart city. Appl. Sci. 11(11) (2021). https://doi.org/10.3390/app11114810, https://www.mdpi.com/2076-3417/11/11/4810
Iacono, M., Barbierato, E., Gribaudo, M.: The simthesys multiformalism modeling framework. Comput. Math. Appl. 64(12), 3828–3839 (2012). https://doi.org/10.1016/J.CAMWA.2012.03.009, https://doi.org/10.1016/j.camwa.2012.03.009
Likotiko, E.D., Nyambo, D., Mwangoka, J.: Multi-agent based iot smart waste monitoring and collection architecture. arXiv preprint arXiv:1711.03966 (2017)
Markov, I., Varone, S., Bierlaire, M.: Vehicle routing for a complex waste collection problem. In: 14th Swiss Transport Research Conference (2014)
Zhang, X., Ahmed, R.R.: A queuing system for inert construction waste management on a reverse logistics network. Autom. Constr. 137, 104221 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Barbierato, E., Gatti, A., Gribaudo, M., Iacono, M. (2025). Performance Evaluation of Smart Bin Systems Using Markovian Agents for Efficient Garbage Collection. In: Doncel, J., Remke, A., Di Pompeo, D. (eds) Computer Performance Engineering. EPEW 2024. Lecture Notes in Computer Science, vol 15454. Springer, Cham. https://doi.org/10.1007/978-3-031-80932-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-80932-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-80931-6
Online ISBN: 978-3-031-80932-3
eBook Packages: Computer ScienceComputer Science (R0)