Skip to main content

Bayesian Uncertainty Estimation Improves nnU-Net Generalization to Unseen Sites for Stroke Lesion Segmentation

  • Conference paper
  • First Online:
Image Analysis in Stroke Diagnosis and Interventions (ISLES 2024, SWITCH 2024)

Abstract

This work studies the effectiveness of Bayesian uncertainty estimation in neural networks for enhancing domain generalization in stroke lesion segmentation. We employ a multi-modal posterior sampling approach for nnU-Net and evaluate it against the conventional nnU-Net. Both models are trained on data from one clinical site and tested on another for the most common imaging in stroke: NCCT, CTA, and CTP. The models produce segmentation probabilities for stroke core and hypoperfused tissue, which are thresholded at different levels and compared to ground truth labels to measure correctly predicted, missing and excess volume, and Dice scores. Conventional nnU-Net is limited in sensitivity adjustment, while the Bayesian approach allows for a flexible trade-off between under- and over-segmentation. The Bayesian nnU-Net demonstrates similar or superior performance w.r.t. Dice scores, with the added advantage of providing more insight into uncertain areas, enabling more nuanced decision-making. The Bayesian approach proved robust in handling data from unseen domains, suggesting its potential for enhancing automated stroke lesion detection across various clinical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, L., et al.: Deep learning in ischemic stroke imaging analysis: a comprehensive review. Biomed. Res. Int. 2022(1), 2456550 (2022)

    Article  Google Scholar 

  2. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  3. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  4. Lin, S.Y., et al.: Toward automated segmentation for acute ischemic stroke using non-contrast computed tomography. Int. J. Comput. Assist. Radiol. Surg. 17(4), 661–671 (2022)

    Article  MATH  Google Scholar 

  5. Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)

    Article  Google Scholar 

  6. Öman, O., Mäkelä, T., Salli, E., Savolainen, S., Kangasniemi, M.: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. European Radiol. Experimental 3, 1–11 (2019)

    Article  Google Scholar 

  7. Ostmeier, S., et al.: Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT. arXiv:2309.03930 (2023)

  8. Tsao, C.W., et al.: Heart disease and stroke statistics-2023 update: a report from the American Heart association. Circulation 147(8), e93–e621 (2023)

    Article  MATH  Google Scholar 

  9. Vorberg, L., Taubmann, O., Ditt, H., Maier, A.: Segmentation of acute ischemic stroke in native and enhanced CT using uncertainty-aware labels. In: BVM Workshop. pp. 267–272. Springer (2024). https://doi.org/10.1007/978-3-658-44037-4_72

  10. de Vries, L., Emmer, B.J., Majoie, C.B., Marquering, H.A., Gavves, E.: PerfU-net: baseline infarct estimation from CT perfusion source data for acute ischemic stroke. Med. Image Anal. 85, 102749 (2023)

    Article  Google Scholar 

  11. Zhao, Y., Yang, C., Schweidtmann, A., Tao, Q.: Efficient bayesian uncertainty estimation for nnU-Net. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 535–544. Springer (2022). https://doi.org/10.1007/978-3-031-16452-1_51

  12. Zou, K., Chen, Z., Yuan, X., Shen, X., Wang, M., Fu, H.: A review of uncertainty estimation and its application in medical imaging. Meta-Radiol., 100003 (2023)

    Google Scholar 

Download references

Acknowledgments

We sincerely thank our collaborators from Universitätsklinikum Schleswig-Holstein Lübeck, Germany, for providing the data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Vorberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vorberg, L. et al. (2025). Bayesian Uncertainty Estimation Improves nnU-Net Generalization to Unseen Sites for Stroke Lesion Segmentation. In: Su, R., et al. Image Analysis in Stroke Diagnosis and Interventions. ISLES SWITCH 2024 2024. Lecture Notes in Computer Science, vol 15408. Springer, Cham. https://doi.org/10.1007/978-3-031-81101-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81101-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81100-5

  • Online ISBN: 978-3-031-81101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics