Abstract
Fast assessment in stroke diagnosis is essential to improve the treatment outcome. Scoring systems such as the ASPECT score facilitate the triage of patients according to stroke severity. For occlusions in the posterior circulation, pcASPECTS evaluates whether certain posterior cerebral regions show early signs of stroke and can be applied using the admission NCCT scan. This work investigates the automatic classification of early stroke changes in the two largest posterior regions based on NCCT images. The main focus lies on the implementation of robust measures that can counteract noise and scanner variances since they are harmful to established Radiomics pipelines. For 170 respectively derived regions from 85 patients, the described pipeline can reach up to 83.84% AUC with 79.40% sensitivity for the cerebellum and 73.14% AUC with 57.97% sensitivity for the occipital regions. A simple in-patient normalization scheme proved to be the most effective measure by improving the AUC by +8.17% and the sensitivity by +16.80%. Additional robustness techniques such as noise augmentation or discarding unstable and correlated features using the post-treatment scan resulted in only slight deviations from the best result, making them valuable tools for improving robustness when using Radiomics for posterior stroke classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Cagnazzo, F., et al.: Mechanical thrombectomy in patients with acute ischemic stroke and aspects \(<=6\): a meta-analysis. J. NeuroInterventional Surg. 12, 350–355 (2020). https://doi.org/10.1136/NEURINTSURG-2019-015237
Cao, Z., et al.: Deep learning derived automated aspects on non‐contrast ct scans of acute ischemic stroke patients. Human Brain Mapp. 43, 3023 (2022). https://doi.org/10.1002/HBM.25845
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)
Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785
Griethuysen, J.J.V., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339
Götz, M., Maier-Hein, K.H.: Optimal statistical incorporation of independent feature stability information into radiomics studies. Sci. Rep. 2020 10:1 10, 1–10 (2020). https://doi.org/10.1038/s41598-020-57739-8
Hacke, W., et al.: Association of outcome with early stroke treatment: pooled analysis of atlantis, ecass, and ninds rt-pa stroke trials. The Lancet 363(9411), 768–774 (2004). https://doi.org/10.1016/S0140-6736(04)15692-4
Kemmling, A., Wersching, H., Berger, K., Knecht, S., Groden, C., Nölte, I.: Decomposing the hounsfield unit: probablistic segmentation of brain tissue in computed tomography. Clin. Neuroradiology 2011 22:1 22, 79–91 (2012). https://doi.org/10.1007/S00062-011-0123-0
Kniep, H.C., et al.: Imaging-based outcome prediction in posterior circulation stroke. J. Neurology 269, 3800–3809 (2022)
Kniep, H.C., et al.: Posterior circulation stroke: machine learning-based detection of early ischemic changes in acute non-contrast ct scans. J. Neurology 267, 2632–2641 (2020)
Kuang, H., et al.: Automated aspects on noncontrast ct scans in patients with acute ischemic stroke using machine learning. American Journal of Neuroradiology 40, 33–38 (2019). https://doi.org/10.3174/AJNR.A5889
Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nature Rev. Clin. Oncol. 2017 14:12 14, 749–762 (2017). https://doi.org/10.1038/nrclinonc.2017.141
Li, L., et al.: Comparison of the performance between frontier aspects software and different levels of radiologists on assessing ct examinations of acute ischaemic stroke patients. Clin. Radiol. 75(5), 358–365 (2020). https://doi.org/10.1016/j.crad.2019.12.010
Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p. 623-631. KDD ’13, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2487575.2487579
Lu, W.Z., Lin, H.A., Bai, C.H., Lin, S.F.: Posterior circulation acute stroke prognosis early ct scores in predicting functional outcomes: a meta-analysis. PLoS ONE 16 (2021). https://doi.org/10.1371/JOURNAL.PONE.0246906
Mackin, D., et al.: Measuring ct scanner variability of radiomics features. Investigative radiology 50, 757 (2015). https://doi.org/10.1097/RLI.0000000000000180
Pexman, J.H.W., et al.: Use of the alberta stroke program early ct score (aspects) for assessing ct scans in patients with acute stroke. Am. J. Neuroradiol. 22, 1534–1542 (2001)
Saver, J.L.E.A.: Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA 316(12), 1279–1289 (2016). https://doi.org/10.1001/jama.2016.13647, https://doi.org/10.1001/jama.2016.13647
Wolff, L., et al.: Validation of automated alberta stroke program early ct score (aspects) software for detection of early ischemic changes on non-contrast brain ct scans. Neuroradiology 63, 491–498 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rist, L. et al. (2025). Robust Feature Selection for Classifying Early Ischemic Changes in Posterior Stroke. In: Su, R., et al. Image Analysis in Stroke Diagnosis and Interventions. ISLES SWITCH 2024 2024. Lecture Notes in Computer Science, vol 15408. Springer, Cham. https://doi.org/10.1007/978-3-031-81101-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-81101-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81100-5
Online ISBN: 978-3-031-81101-2
eBook Packages: Computer ScienceComputer Science (R0)