Skip to main content

Robust Feature Selection for Classifying Early Ischemic Changes in Posterior Stroke

  • Conference paper
  • First Online:
Image Analysis in Stroke Diagnosis and Interventions (ISLES 2024, SWITCH 2024)

Abstract

Fast assessment in stroke diagnosis is essential to improve the treatment outcome. Scoring systems such as the ASPECT score facilitate the triage of patients according to stroke severity. For occlusions in the posterior circulation, pcASPECTS evaluates whether certain posterior cerebral regions show early signs of stroke and can be applied using the admission NCCT scan. This work investigates the automatic classification of early stroke changes in the two largest posterior regions based on NCCT images. The main focus lies on the implementation of robust measures that can counteract noise and scanner variances since they are harmful to established Radiomics pipelines. For 170 respectively derived regions from 85 patients, the described pipeline can reach up to 83.84% AUC with 79.40% sensitivity for the cerebellum and 73.14% AUC with 57.97% sensitivity for the occipital regions. A simple in-patient normalization scheme proved to be the most effective measure by improving the AUC by +8.17% and the sensitivity by +16.80%. Additional robustness techniques such as noise augmentation or discarding unstable and correlated features using the post-treatment scan resulted in only slight deviations from the best result, making them valuable tools for improving robustness when using Radiomics for posterior stroke classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cagnazzo, F., et al.: Mechanical thrombectomy in patients with acute ischemic stroke and aspects \(<=6\): a meta-analysis. J. NeuroInterventional Surg. 12, 350–355 (2020). https://doi.org/10.1136/NEURINTSURG-2019-015237

  2. Cao, Z., et al.: Deep learning derived automated aspects on non‐contrast ct scans of acute ischemic stroke patients. Human Brain Mapp. 43, 3023 (2022). https://doi.org/10.1002/HBM.25845

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002)

    Google Scholar 

  4. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. KDD ’16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939785

  5. Griethuysen, J.J.V., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77, e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339

  6. Götz, M., Maier-Hein, K.H.: Optimal statistical incorporation of independent feature stability information into radiomics studies. Sci. Rep. 2020 10:1 10, 1–10 (2020). https://doi.org/10.1038/s41598-020-57739-8

  7. Hacke, W., et al.: Association of outcome with early stroke treatment: pooled analysis of atlantis, ecass, and ninds rt-pa stroke trials. The Lancet 363(9411), 768–774 (2004). https://doi.org/10.1016/S0140-6736(04)15692-4

  8. Kemmling, A., Wersching, H., Berger, K., Knecht, S., Groden, C., Nölte, I.: Decomposing the hounsfield unit: probablistic segmentation of brain tissue in computed tomography. Clin. Neuroradiology 2011 22:1 22, 79–91 (2012). https://doi.org/10.1007/S00062-011-0123-0

  9. Kniep, H.C., et al.: Imaging-based outcome prediction in posterior circulation stroke. J. Neurology 269, 3800–3809 (2022)

    Google Scholar 

  10. Kniep, H.C., et al.: Posterior circulation stroke: machine learning-based detection of early ischemic changes in acute non-contrast ct scans. J. Neurology 267, 2632–2641 (2020)

    Google Scholar 

  11. Kuang, H., et al.: Automated aspects on noncontrast ct scans in patients with acute ischemic stroke using machine learning. American Journal of Neuroradiology 40, 33–38 (2019). https://doi.org/10.3174/AJNR.A5889

  12. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nature Rev. Clin. Oncol. 2017 14:12 14, 749–762 (2017). https://doi.org/10.1038/nrclinonc.2017.141

  13. Li, L., et al.: Comparison of the performance between frontier aspects software and different levels of radiologists on assessing ct examinations of acute ischaemic stroke patients. Clin. Radiol. 75(5), 358–365 (2020). https://doi.org/10.1016/j.crad.2019.12.010

    Article  MATH  Google Scholar 

  14. Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p. 623-631. KDD ’13, Association for Computing Machinery, New York, NY, USA (2013). https://doi.org/10.1145/2487575.2487579

  15. Lu, W.Z., Lin, H.A., Bai, C.H., Lin, S.F.: Posterior circulation acute stroke prognosis early ct scores in predicting functional outcomes: a meta-analysis. PLoS ONE 16 (2021). https://doi.org/10.1371/JOURNAL.PONE.0246906

  16. Mackin, D., et al.: Measuring ct scanner variability of radiomics features. Investigative radiology 50, 757 (2015). https://doi.org/10.1097/RLI.0000000000000180

  17. Pexman, J.H.W., et al.: Use of the alberta stroke program early ct score (aspects) for assessing ct scans in patients with acute stroke. Am. J. Neuroradiol. 22, 1534–1542 (2001)

    MATH  Google Scholar 

  18. Saver, J.L.E.A.: Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA 316(12), 1279–1289 (2016). https://doi.org/10.1001/jama.2016.13647, https://doi.org/10.1001/jama.2016.13647

  19. Wolff, L., et al.: Validation of automated alberta stroke program early ct score (aspects) software for detection of early ischemic changes on non-contrast brain ct scans. Neuroradiology 63, 491–498 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Rist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rist, L. et al. (2025). Robust Feature Selection for Classifying Early Ischemic Changes in Posterior Stroke. In: Su, R., et al. Image Analysis in Stroke Diagnosis and Interventions. ISLES SWITCH 2024 2024. Lecture Notes in Computer Science, vol 15408. Springer, Cham. https://doi.org/10.1007/978-3-031-81101-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81101-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81100-5

  • Online ISBN: 978-3-031-81101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics