Skip to main content

Complexity of Infinite Words

  • Conference paper
  • First Online:
Machines, Computations, and Universality (MCU 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15270))

Included in the following conference series:

  • 65 Accesses

Abstract

Complexity of infinite words is a widely studied field in combinatorics on words. A classical notion of a complexity of an infinite word is defined as a function counting, for each n, the number of its distinct factors (or blocks of consecutive letters) of length n. In their 1938 seminal paper on symbolic dynamics, Morse and Hedlund gave a relation between factor complexity and periodicity in infinite words; namely, they proved that each aperiodic infinite word w has factor complexity at least \(n+1\) for each length n. They further showed that an infinite word w has factor complexity \(n+1\) for each length n if and only if w is binary, aperiodic and balanced, i.e., w is a Sturmian word. In this paper, we consider various modifications of the notion of a complexity of infinite words and generalizations of Morse and Hedlund theorem.

The study was supported by Russian Science Foundation, project 23-11-00133. Conference travel expenses have been covered by Projet ’NOW’ of RISE Academy, Université Côte d’Azur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamczewski, B.: Balances for fixed points of primitive substitutions. Theor. Comput. Sci. 307(1), 47–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avgustinovich, S.V., Cassaigne, J., Frid, A.E.: Sequences of low arithmetical complexity. Theor. Inf. Appl. 40, 569–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avgustinovich, S.V., Fon-Der-Flaass, D.G., Frid, A.E.: Arithmetical complexity of infinite words. Words Lang. Comb. III, 51–62 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Blanchet-Sadri, F., Fox, N., Rampersad, N.: On the asymptotic Abelian complexity of morphic words. Adv. Appl. Math. 61, 46–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cassaigne, J., Fici, G., Sciortino, M., Zamboni, L.Q.: Cyclic complexity of words. J. Comb. Theory Ser. A 145, 36–56 (2017)

    Google Scholar 

  6. Cassaigne, J., Frid, A.E.: On arithmetical complexity of Sturmian words. Theor. Comput. Sci. 380, 304–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cassaigne, J., Nicolas, F.: Factor complexity. Chapter in: Combinatorics, Automata and Number Theory, Berthé, V., Rigo, M. (eds.) Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010)

    Google Scholar 

  8. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22(4), 905–920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst. Theory 7, 138–153 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Currie, J., Rampersad, N.: Recurrent words with constant Abelian complexity. Adv. Appl. Math. 47, 116–124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cyr, V., Kra, B.: Nonexpansive \(\mathbb{Z}^2\)-subdynamics and Nivat’s conjecture. Trans. Am. Math. Soc. 367(9), 6487–6537 (2015)

    Google Scholar 

  12. Cyr, V., Kra, B.: Complexity of short rectangles and periodicity. Eur. J. Comb. 52, 146–173 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theor. Comput. Sci. 183, 45–82 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Durand, F., Rigo, M.: Multidimensional extension of the Morse-Hedlund theorem. Eur. J. Combin. 34(2), 391–409 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferenczi, S., Mauduit, C.: Transcendence of numbers with a low complexity expansion. J. 1244 Number Theory 67, 146–161 (1997)

    Google Scholar 

  16. Fici, G., Puzynina, S.: Abelian combinatorics on words: a survey. Comput. Sci. Rev. 47, 100532 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frid, A.E.: Sequences of linear arithmetical complexity. Theor. Comput. Sci. 339, 68–87 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frid, A.: A lower bound for the arithmetical complexity of Sturmian words. Siberian Electron. Math. Rep. 2, 14–22 (2005). (in Russian, English abstract)

    Google Scholar 

  19. Kamae, T., Hui, R.: Maximal pattern complexity of words over \(l\) letters. Eur. J. Comb. 27, 125–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kamae, T., Widmer, S., Zamboni, L.Q.: Abelian maximal pattern complexity of words. Ergodic1283 Theory Dyn. Syst. 35(1), 142–151 (2015)

    Google Scholar 

  21. Kamae, T., Zamboni, L.Q.: Sequence entropy and the maximal pattern complexity of infinite words. Ergodic Theory Dyn. Syst. 22(4), 1191–1199 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kamae, T., Zamboni, L.Q.: Maximal pattern complexity for discrete systems. Ergodic Theory Dyn. Syst. 22, 1201–1214 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund theorem for \(k\)-Abelian equivalence. Acta Cybern. 23(1), 175–189 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equivalence and complexity of infinite words. J. Comb. Theory Ser. A 120(8), 2189–2206 (2013)

    Google Scholar 

  25. Kari, J., Moutot, E.: Decidability and periodicity of low complexity tilings. Theory Comput. Syst. 67(1), 125–148 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. Inf. Comput. 271, 104481 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  28. Morse, M., Hedlund, G.: Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morse, M., Hedlund, G.: Symbolic dynamics II: Sturmian sequences. Am. J. Math. 62, 1–42 (1940)

    Article  MATH  Google Scholar 

  30. Nivat, M.: Invited talk at ICALP 1997

    Google Scholar 

  31. Pansiot, J.J.: Complexité des facteurs des mots infinis engendrés par morphismes itérés. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 380–389. Springer, Heidelberg (1984)

    Google Scholar 

  32. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)

    Article  MATH  Google Scholar 

  33. Puzynina, S.: Aperiodic two-dimensional words of small Abelian complexity. Electron. J. Comb. 26(4), 4 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts. J. Lond. Math. Soc. 83, 79–95 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and Abelian complexity of the Tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saarela, A.: Ultimately constant abelian complexity of infinite words. J. Autom. Lang. Comb. 14(3–4), 255–258 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Sander, J., Tijdeman, R.: The rectangle complexity of functions on two-dimensional lattices. Theor. Comput. Sci. 270, 857–863 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Whiteland, M.A.: Asymptotic Abelian complexities of certain morphic binary words. J. Autom. Lang. Comb. 24(1), 89–114 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Puzynina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puzynina, S. (2025). Complexity of Infinite Words. In: Formenti, E., Durand-Lose, J. (eds) Machines, Computations, and Universality. MCU 2024. Lecture Notes in Computer Science, vol 15270. Springer, Cham. https://doi.org/10.1007/978-3-031-81202-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81202-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81201-9

  • Online ISBN: 978-3-031-81202-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics