Abstract
Complexity of infinite words is a widely studied field in combinatorics on words. A classical notion of a complexity of an infinite word is defined as a function counting, for each n, the number of its distinct factors (or blocks of consecutive letters) of length n. In their 1938 seminal paper on symbolic dynamics, Morse and Hedlund gave a relation between factor complexity and periodicity in infinite words; namely, they proved that each aperiodic infinite word w has factor complexity at least \(n+1\) for each length n. They further showed that an infinite word w has factor complexity \(n+1\) for each length n if and only if w is binary, aperiodic and balanced, i.e., w is a Sturmian word. In this paper, we consider various modifications of the notion of a complexity of infinite words and generalizations of Morse and Hedlund theorem.
The study was supported by Russian Science Foundation, project 23-11-00133. Conference travel expenses have been covered by Projet ’NOW’ of RISE Academy, Université Côte d’Azur.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Adamczewski, B.: Balances for fixed points of primitive substitutions. Theor. Comput. Sci. 307(1), 47–75 (2003)
Avgustinovich, S.V., Cassaigne, J., Frid, A.E.: Sequences of low arithmetical complexity. Theor. Inf. Appl. 40, 569–582 (2006)
Avgustinovich, S.V., Fon-Der-Flaass, D.G., Frid, A.E.: Arithmetical complexity of infinite words. Words Lang. Comb. III, 51–62 (2003)
Blanchet-Sadri, F., Fox, N., Rampersad, N.: On the asymptotic Abelian complexity of morphic words. Adv. Appl. Math. 61, 46–84 (2014)
Cassaigne, J., Fici, G., Sciortino, M., Zamboni, L.Q.: Cyclic complexity of words. J. Comb. Theory Ser. A 145, 36–56 (2017)
Cassaigne, J., Frid, A.E.: On arithmetical complexity of Sturmian words. Theor. Comput. Sci. 380, 304–316 (2007)
Cassaigne, J., Nicolas, F.: Factor complexity. Chapter in: Combinatorics, Automata and Number Theory, Berthé, V., Rigo, M. (eds.) Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010)
Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22(4), 905–920 (2011)
Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst. Theory 7, 138–153 (1973)
Currie, J., Rampersad, N.: Recurrent words with constant Abelian complexity. Adv. Appl. Math. 47, 116–124 (2011)
Cyr, V., Kra, B.: Nonexpansive \(\mathbb{Z}^2\)-subdynamics and Nivat’s conjecture. Trans. Am. Math. Soc. 367(9), 6487–6537 (2015)
Cyr, V., Kra, B.: Complexity of short rectangles and periodicity. Eur. J. Comb. 52, 146–173 (2016)
de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theor. Comput. Sci. 183, 45–82 (1997)
Durand, F., Rigo, M.: Multidimensional extension of the Morse-Hedlund theorem. Eur. J. Combin. 34(2), 391–409 (2013)
Ferenczi, S., Mauduit, C.: Transcendence of numbers with a low complexity expansion. J. 1244 Number Theory 67, 146–161 (1997)
Fici, G., Puzynina, S.: Abelian combinatorics on words: a survey. Comput. Sci. Rev. 47, 100532 (2023)
Frid, A.E.: Sequences of linear arithmetical complexity. Theor. Comput. Sci. 339, 68–87 (2005)
Frid, A.: A lower bound for the arithmetical complexity of Sturmian words. Siberian Electron. Math. Rep. 2, 14–22 (2005). (in Russian, English abstract)
Kamae, T., Hui, R.: Maximal pattern complexity of words over \(l\) letters. Eur. J. Comb. 27, 125–137 (2006)
Kamae, T., Widmer, S., Zamboni, L.Q.: Abelian maximal pattern complexity of words. Ergodic1283 Theory Dyn. Syst. 35(1), 142–151 (2015)
Kamae, T., Zamboni, L.Q.: Sequence entropy and the maximal pattern complexity of infinite words. Ergodic Theory Dyn. Syst. 22(4), 1191–1199 (2002)
Kamae, T., Zamboni, L.Q.: Maximal pattern complexity for discrete systems. Ergodic Theory Dyn. Syst. 22, 1201–1214 (2002)
Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund theorem for \(k\)-Abelian equivalence. Acta Cybern. 23(1), 175–189 (2017)
Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equivalence and complexity of infinite words. J. Comb. Theory Ser. A 120(8), 2189–2206 (2013)
Kari, J., Moutot, E.: Decidability and periodicity of low complexity tilings. Theory Comput. Syst. 67(1), 125–148 (2023)
Kari, J., Szabados, M.: An algebraic geometric approach to Nivat’s conjecture. Inf. Comput. 271, 104481 (2020)
Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)
Morse, M., Hedlund, G.: Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)
Morse, M., Hedlund, G.: Symbolic dynamics II: Sturmian sequences. Am. J. Math. 62, 1–42 (1940)
Nivat, M.: Invited talk at ICALP 1997
Pansiot, J.J.: Complexité des facteurs des mots infinis engendrés par morphismes itérés. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 380–389. Springer, Heidelberg (1984)
Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
Puzynina, S.: Aperiodic two-dimensional words of small Abelian complexity. Electron. J. Comb. 26(4), 4 (2019)
Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts. J. Lond. Math. Soc. 83, 79–95 (2011)
Richomme, G., Saari, K., Zamboni, L.Q.: Balance and Abelian complexity of the Tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)
Saarela, A.: Ultimately constant abelian complexity of infinite words. J. Autom. Lang. Comb. 14(3–4), 255–258 (2009)
Sander, J., Tijdeman, R.: The rectangle complexity of functions on two-dimensional lattices. Theor. Comput. Sci. 270, 857–863 (2002)
Whiteland, M.A.: Asymptotic Abelian complexities of certain morphic binary words. J. Autom. Lang. Comb. 24(1), 89–114 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Puzynina, S. (2025). Complexity of Infinite Words. In: Formenti, E., Durand-Lose, J. (eds) Machines, Computations, and Universality. MCU 2024. Lecture Notes in Computer Science, vol 15270. Springer, Cham. https://doi.org/10.1007/978-3-031-81202-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-81202-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81201-9
Online ISBN: 978-3-031-81202-6
eBook Packages: Computer ScienceComputer Science (R0)