Skip to main content

Succinct Star-Controlled Insertion-Deletion Systems Using Space Separating Normal Forms

  • Conference paper
  • First Online:
Machines, Computations, and Universality (MCU 2024)

Abstract

Graph-controlled insertion-deletion (GCID) systems are regulated extensions of insertion-deletion systems. At AFL 2023, we introduced star-controlled GCID systems as a restriction of GCID systems where there is a special component, namely, a central component that will process the string and then send it to any other component that processes another step and then send the string back to the central component. With this restriction, here we obtain three new, different computational completeness results for some typical descriptional complexity measures. These results are crucially based on a variant of Special Geffert normal form (SGNF) of type-0 grammars, that we called space separating SGNF in a paper that appeared in Natural Computing in 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We can assume this special form of w due to ssSGNF, as the description of this normal form makes clear that E alternates with A or C, and similarly, B or D alternate with F.

References

  1. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of RNA. Ellis Horwood (1993)

    Google Scholar 

  2. Fernau, H., Kuppusamy, L., Raman, I.: On the computational completeness of graph-controlled insertion-deletion systems with binary sizes. Theor. Comput. Sci. 682, 100–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fernau, H., Kuppusamy, L., Raman, I.: Computational completeness of simple semi-conditional insertion-deletion systems of degree (2, 1). Nat. Comput. 18(3), 563–577 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fernau, H., Kuppusamy, L., Raman, I.: On path-controlled insertion-deletion systems. Acta Informatica 56(1), 35–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fernau, H., Kuppusamy, L., Raman, I.: On the generative capacity of matrix insertion-deletion systems of small sum-norm. Nat. Comput. 20(4), 671–689 (2021). https://doi.org/10.1007/s11047-021-09866-y

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernau, H., Kuppusamy, L., Raman, I.: When stars control a grammar’s work. In: Gazdag, Z., Iván, S., Kovásznai, G. (eds.) Proceedings of the 16th International Conference on Automata and Formal Languages, AFL. EPTCS, vol. 386, pp. 96–111. Open Publishing Association (2023)

    Google Scholar 

  7. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS, vol. 31, pp. 88–98. Open Publishing Association (2010)

    Google Scholar 

  8. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique théorique et Applications/Theor. Inform. Appl. 25, 473–498 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing - 14th International Conference, CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Cham (2014)

    Google Scholar 

  10. Ivanov, S., Verlan, S.: Universality and computational completeness of controlled leftist insertion-deletion systems. Fund. Inform. 155(1–2), 163–185 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf. Comput. 131(1), 47–61 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion systems with one-sided contexts. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4_31

    Chapter  MATH  Google Scholar 

  13. Marcus, S.: Contextual grammars. Rev. Roumaine Math. Pures Appl. 14, 1525–1534 (1969)

    MathSciNet  MATH  Google Scholar 

  14. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 205–217. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74593-8_18

    Chapter  MATH  Google Scholar 

  15. Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Cham (1998)

    Google Scholar 

  16. Petre, I., Verlan, S.: Matrix insertion-deletion systems. Theor. Comput. Sci. 456, 80–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to the reviewers of MCU, in particular, as they spotted some problems in a previous construction as submitted to the conference. Thoroughly reconsidering our approach has even led to improved results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indhumathi Raman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernau, H., Kuppusamy, L., Raman, I. (2025). Succinct Star-Controlled Insertion-Deletion Systems Using Space Separating Normal Forms. In: Formenti, E., Durand-Lose, J. (eds) Machines, Computations, and Universality. MCU 2024. Lecture Notes in Computer Science, vol 15270. Springer, Cham. https://doi.org/10.1007/978-3-031-81202-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81202-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81201-9

  • Online ISBN: 978-3-031-81202-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics