Skip to main content

Universality of Turing Tumble of Finite Size

  • Conference paper
  • First Online:
Machines, Computations, and Universality (MCU 2024)

Abstract

The Turing Tumble is a mechanical puzzle game that simulates the operations of a computer processor using marbles and various mechanical components. The game allows for a visual representation of the computation and is widely used in the educational context. It was shown to be Turing-complete providing that an appropriate infinite configuration of the board, an infinite marble supply and the possibility to construct arbitrarily long frictionless gear chains are available. In this paper we show the computational universality of the game for a finite configuration and no unbounded gear chains. The only source of infinity is the supply of marbles and the unbounded drop capacity. We also provide a thoughtful analysis of the computation representation in Turing Tumble and discuss the possible input and output types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhazov, A., Ivanov, S., Pelz, E., Verlan, S.: Small universal deterministic Petri nets with inhibitor arcs. J. Autom. Lang. Comb. 21(1–2), 7–26 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel multiset rewriting systems. Theoret. Comput. Sci. 412(17), 1581–1591 (2011). https://doi.org/10.1016/j.tcs.2010.10.033

    Article  MathSciNet  MATH  Google Scholar 

  3. Barzdin, I.M.: Ob odnom klasse machin Turinga (machiny Minskogo), Russian. Algebra Logika 1, 42–51 (1963)

    MATH  Google Scholar 

  4. Crossen, J.: Simulation of cellular automata using Turing Tumble (2018). https://community.turingtumble.com/t/proof-of-turing-completeness/372/23

  5. Crossen, J.: A simulator for the Turing Tumble (2018). https://github.com/jessecrossen/ttsim/

  6. Johnson, M.P.: Turing tumble is PSPACE)-complete. In: Heggernes, P. (ed.) CIAC 2019. LNCS, vol. 11485, pp. 274–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17402-6_23

    Chapter  MATH  Google Scholar 

  7. Kong, S.-C., Abelson, H. (eds.): Computational Thinking Education. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6528-7

    Book  MATH  Google Scholar 

  8. Korec, I.: Small universal register machines. Theoret. Comput. Sci. 168(2), 267–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood Cliffts (1967)

    MATH  Google Scholar 

  10. Pitt, L.: Turing tumble is turing-complete. Theor. Comput. Sci. 948, 113734 (2023). https://doi.org/j.tcs.2023.113734

  11. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer, Cham (2012)

    MATH  Google Scholar 

  12. Schroeppel, R.: A two counter machine cannot calculate \(2^{N}\). In: AI Memos. MIT AI Lab (1972)

    Google Scholar 

  13. Tomita, T., Lee, J., Isokawa, T., Peper, F., Kamiura, N., Yumoto, T.: Cellular automaton model for Turing tumble mechanical computer. In: Sixth International Symposium on Computing and Networking, CANDAR Workshops 2018, Takayama, Japan, 27–30 November 2018, pp. 32–37. IEEE Computer Society (2018). https://doi.org/10.1109/CANDARW.2018.00014

  14. Tomita, T., Lee, J., Isokawa, T., Peper, F., Yumoto, T., Kamiura, N.: Universal logic elements constructed on the Turing Tumble. Nat. Comput. 19(4), 787–795 (2020). https://doi.org/10.1007/S11047-019-09760-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Woods, D., Neary, T.: The complexity of small universal Turing machines: a survey. Theoret. Comput. Sci. 410(4–5), 443–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yama-chan: Turing Tumble CPU (2019). https://community.turingtumble.com/t/turing-tumble-cpu/750

  17. Turing Tumble: Educator guide. https://upperstory.com/turingtumble/edu/resources/

  18. Turing Tumble - Build marble-powered computers (2024). https://upperstory.com/turingtumble/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Verlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alhazov, A., Freund, R., Ivanov, S., Verlan, S. (2025). Universality of Turing Tumble of Finite Size. In: Formenti, E., Durand-Lose, J. (eds) Machines, Computations, and Universality. MCU 2024. Lecture Notes in Computer Science, vol 15270. Springer, Cham. https://doi.org/10.1007/978-3-031-81202-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81202-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81201-9

  • Online ISBN: 978-3-031-81202-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics