Skip to main content

On the Entanglement and Mixedness of Quantum Boolean Function Circuits

  • Conference paper
  • First Online:
Machines, Computations, and Universality (MCU 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15270))

Included in the following conference series:

  • 32 Accesses

Abstract

Understanding the entanglement and mixedness introduced into a quantum system by quantum Boolean functions (BFs) circuits holds a significant potential in quantum information theory. This study provides an overview and empirical findings on purity, negativity, and von Neumann entropy with the aim to reveal an insight into the internal structure of the corresponding unitary operators. Approximately 5,000 quantum circuits were examined for BFs of different types, e.g., balanced, symmetric, bent, etc. and of various properties such as algebraic degree, algebraic immunity, resiliency order, and others. While previous research typically focuses on input superposition alone through addition of Hadamard gates (Superposition scenario), we introduce additional entanglement through random statevector generation (Random Statevector scenarios). Results show a slight increase in von Neumann entropy and negativity for the Random Statevector scenario as compared to the Superposition scenario. Surprisingly, further measurement increases were observed when adding classical randomness via random qubit rotations (Random Qubit Rotations scenario) instead of random statevector generation. The observed trends include lower mean values and wider ranges of negativity and von Neumann entropy for BFs of higher algebraic degree in the Superposition scenario. Additionally, plateaued functions of lower algebraic degree exhibit purity measurements with wider spread in the Random Statevector scenario as compared to the Superposition scenario. We hope that this work may inspire new theoretical studies on quantum BF circuits. For example, a deeper understanding of quantum BF circuits with high mixedness and entanglement may lead to the development of novel quantum error correction techniques.

This study was supported by the IBM Quantum Researchers program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2573505. Accessed 15 Nov 2021

  2. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  MATH  Google Scholar 

  3. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22, 563–591 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birkhoff, G.: Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society (1940)

    Google Scholar 

  6. Carlet, C.: Nonlinearity of Boolean functions and its applications. Boolean Methods Models 5, 35–52 (2010)

    MATH  Google Scholar 

  7. Carlet, C.: Algebraic Immunity of Boolean Functions. In: van Tilborg, H.C.A., Jajodia, S. (eds) Encyclopedia of Cryptography and Security, pp. 31–32. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5_333

  8. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. Roy. Soc. London A 400(1818), 97–117 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Y., Zhang, F., Liu, M.: On the resistance of Boolean functions against fast algebraic attacks. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 261–274. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9_18

    Chapter  MATH  Google Scholar 

  10. Fastovets, D., Bogdanov, Y., Bogdanova, N., Lukichev, V.: Representation of Boolean functions in terms of quantum computation. In: Lukichev, V.F., Rudenko, K.V. (eds.) International Conference on Micro- and Nano-Electronics 2018. SPIE (2019). https://doi.org/10.1117/12.2522053

  11. Fastovets, D., Bogdanov, Y., Bogdanova, N., Lukichev, V.: Representation of Boolean functions in terms of quantum computation. In: Proceedings of the International Conference on Micro- and Nano-Electronics (2019). https://doi.org/10.1117/12.2522053

  12. Fedus, W.: Entropy in classical and quantum information theory (2015). https://api.semanticscholar.org/CorpusID:18933184

  13. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gantmacher, F.R.: The Theory of Matrices, vol. 1. Chelsea, New York (1959)

    MATH  Google Scholar 

  15. Genova, D., Hoogeboom, H.J., Prodanoff, Z.: Extracting reaction systems from function behavior. J. Membrane Comput. 2(3), 194–206 (2020). https://doi.org/10.1007/s41965-020-00045-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Hadfield, S.: On the representation of Boolean and real functions as Hamiltonians for quantum computing. ACM Trans. Quantum Comput. 2(4) (2021). https://doi.org/10.1145/3478519

  17. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hirvensalo, M.: Studies on Boolean functions related to quantum computing. Citeseer (2003)

    Google Scholar 

  19. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  MATH  Google Scholar 

  20. Manev, K., Bakoev., V.: Algorithms for performing the Zhegalkin transformation. In: Proceedings of the XXVII Spring Conference of the Union of Bulgarian Mathematicians, pp. 229–233. Union of Bulgarian Mathematicians, Pleven (1998)

    Google Scholar 

  21. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme. Trans. IRE Prof. Group Inf. Theory (PGIT) PGIT-4(4), 38–49 (1954)

    Google Scholar 

  23. Roth, R.M.: Boolean Functions: Theory, Algorithms, and Applications. Springer (2009)

    Google Scholar 

  24. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  25. Suprun, V.P.: The complexity of Boolean functions in the reed-muller polynomials class. Autom. Control. Comput. Sci. 51(5), 285–293 (2017)

    Article  MATH  Google Scholar 

  26. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 10.3) (2023). https://www.sagemath.org

  27. Vajapeyam, S.: Understanding Shannon’s entropy metric for information (2014)

    Google Scholar 

  28. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3) (2002). https://doi.org/10.1103/physreva.65.032314

  29. Walsh, J.L.: A closed set of orthogonal functions. Am. J. Math. 45, 5–24 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei, T.C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67(2) (2003). https://doi.org/10.1103/physreva.67.022110

  31. Wolfram, S.: A New Kind of Science. Wolfram Media (2002). https://www.wolframscience.com

  32. Žegalkin, I.I.: Sur le calcul des propositions dans la logique symbolique. Rec. Math. Moscou 34, 9–28 (1927). http://mi.mathnet.ru/eng/msb7433

  33. Yczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58(2), 883–892 (1998). https://doi.org/10.1103/physreva.58.883

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the valuable resources provided through the IBM Quantum Researcher’s program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zornitza Prodanoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prodanoff, Z., Kulbaka, I., Interlichia, N. (2025). On the Entanglement and Mixedness of Quantum Boolean Function Circuits. In: Formenti, E., Durand-Lose, J. (eds) Machines, Computations, and Universality. MCU 2024. Lecture Notes in Computer Science, vol 15270. Springer, Cham. https://doi.org/10.1007/978-3-031-81202-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81202-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81201-9

  • Online ISBN: 978-3-031-81202-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics