Abstract
Understanding the entanglement and mixedness introduced into a quantum system by quantum Boolean functions (BFs) circuits holds a significant potential in quantum information theory. This study provides an overview and empirical findings on purity, negativity, and von Neumann entropy with the aim to reveal an insight into the internal structure of the corresponding unitary operators. Approximately 5,000 quantum circuits were examined for BFs of different types, e.g., balanced, symmetric, bent, etc. and of various properties such as algebraic degree, algebraic immunity, resiliency order, and others. While previous research typically focuses on input superposition alone through addition of Hadamard gates (Superposition scenario), we introduce additional entanglement through random statevector generation (Random Statevector scenarios). Results show a slight increase in von Neumann entropy and negativity for the Random Statevector scenario as compared to the Superposition scenario. Surprisingly, further measurement increases were observed when adding classical randomness via random qubit rotations (Random Qubit Rotations scenario) instead of random statevector generation. The observed trends include lower mean values and wider ranges of negativity and von Neumann entropy for BFs of higher algebraic degree in the Superposition scenario. Additionally, plateaued functions of lower algebraic degree exhibit purity measurements with wider spread in the Random Statevector scenario as compared to the Superposition scenario. We hope that this work may inspire new theoretical studies on quantum BF circuits. For example, a deeper understanding of quantum BF circuits with high mixedness and entanglement may lead to the development of novel quantum error correction techniques.
This study was supported by the IBM Quantum Researchers program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum computing (2019). https://doi.org/10.5281/zenodo.2573505. Accessed 15 Nov 2021
Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)
Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22, 563–591 (1980)
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)
Birkhoff, G.: Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25. American Mathematical Society (1940)
Carlet, C.: Nonlinearity of Boolean functions and its applications. Boolean Methods Models 5, 35–52 (2010)
Carlet, C.: Algebraic Immunity of Boolean Functions. In: van Tilborg, H.C.A., Jajodia, S. (eds) Encyclopedia of Cryptography and Security, pp. 31–32. Springer, Boston (2011). https://doi.org/10.1007/978-1-4419-5906-5_333
Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. Roy. Soc. London A 400(1818), 97–117 (1985)
Du, Y., Zhang, F., Liu, M.: On the resistance of Boolean functions against fast algebraic attacks. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 261–274. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9_18
Fastovets, D., Bogdanov, Y., Bogdanova, N., Lukichev, V.: Representation of Boolean functions in terms of quantum computation. In: Lukichev, V.F., Rudenko, K.V. (eds.) International Conference on Micro- and Nano-Electronics 2018. SPIE (2019). https://doi.org/10.1117/12.2522053
Fastovets, D., Bogdanov, Y., Bogdanova, N., Lukichev, V.: Representation of Boolean functions in terms of quantum computation. In: Proceedings of the International Conference on Micro- and Nano-Electronics (2019). https://doi.org/10.1117/12.2522053
Fedus, W.: Entropy in classical and quantum information theory (2015). https://api.semanticscholar.org/CorpusID:18933184
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)
Gantmacher, F.R.: The Theory of Matrices, vol. 1. Chelsea, New York (1959)
Genova, D., Hoogeboom, H.J., Prodanoff, Z.: Extracting reaction systems from function behavior. J. Membrane Comput. 2(3), 194–206 (2020). https://doi.org/10.1007/s41965-020-00045-z
Hadfield, S.: On the representation of Boolean and real functions as Hamiltonians for quantum computing. ACM Trans. Quantum Comput. 2(4) (2021). https://doi.org/10.1145/3478519
Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)
Hirvensalo, M.: Studies on Boolean functions related to quantum computing. Citeseer (2003)
Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55
Manev, K., Bakoev., V.: Algorithms for performing the Zhegalkin transformation. In: Proceedings of the XXVII Spring Conference of the Union of Bulgarian Mathematicians, pp. 229–233. Union of Bulgarian Mathematicians, Pleven (1998)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)
Reed, I.S.: A class of multiple-error-correcting codes and the decoding scheme. Trans. IRE Prof. Group Inf. Theory (PGIT) PGIT-4(4), 38–49 (1954)
Roth, R.M.: Boolean Functions: Theory, Algorithms, and Applications. Springer (2009)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Suprun, V.P.: The complexity of Boolean functions in the reed-muller polynomials class. Autom. Control. Comput. Sci. 51(5), 285–293 (2017)
The Sage Developers: SageMath, the Sage Mathematics Software System (Version 10.3) (2023). https://www.sagemath.org
Vajapeyam, S.: Understanding Shannon’s entropy metric for information (2014)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3) (2002). https://doi.org/10.1103/physreva.65.032314
Walsh, J.L.: A closed set of orthogonal functions. Am. J. Math. 45, 5–24 (1923)
Wei, T.C., Nemoto, K., Goldbart, P.M., Kwiat, P.G., Munro, W.J., Verstraete, F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67(2) (2003). https://doi.org/10.1103/physreva.67.022110
Wolfram, S.: A New Kind of Science. Wolfram Media (2002). https://www.wolframscience.com
Žegalkin, I.I.: Sur le calcul des propositions dans la logique symbolique. Rec. Math. Moscou 34, 9–28 (1927). http://mi.mathnet.ru/eng/msb7433
Yczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58(2), 883–892 (1998). https://doi.org/10.1103/physreva.58.883
Acknowledgements
The authors appreciate the valuable resources provided through the IBM Quantum Researcher’s program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Prodanoff, Z., Kulbaka, I., Interlichia, N. (2025). On the Entanglement and Mixedness of Quantum Boolean Function Circuits. In: Formenti, E., Durand-Lose, J. (eds) Machines, Computations, and Universality. MCU 2024. Lecture Notes in Computer Science, vol 15270. Springer, Cham. https://doi.org/10.1007/978-3-031-81202-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-81202-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81201-9
Online ISBN: 978-3-031-81202-6
eBook Packages: Computer ScienceComputer Science (R0)