Skip to main content

Towards Reproducible Research in Machine Learning via Blockchain

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2023)

Abstract

Artificial Intelligence, particularly in Machine Learning and related research areas such as Operational Research, currently faces a reproducibility crisis. Researchers encounter difficulties reproducing key results due to lacking critical details, including the disconnection between publications and the associated codes, data, and parameter settings. Solutions that improve code accessibility, data provenance tracking, research transparency, auditing of obtained results, and trust can significantly accelerate algorithm and model development, validation, and transition into real-world applications. Blockchain technology, with its features of decentralization, data immutability, cryptographic hash functions, and consensus algorithms, provides a promising avenue for developing such solutions. By leveraging the distributed ledger working over a peer-to-peer network, a secure and auditable infrastructure can be established for sharing and controlling data in a trusted manner. Our analysis examines the current state-of-the-art blockchain-based proposals that target reproducibility issues in the Machine Learning domain. Based on the analysis of existing solutions, we propose a high-level architecture and main modules for developing a blockchain-based platform that enhances reproducible research in Machine Learning and can be adapted to other Artificial Intelligence domains.

This research has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-MIP-21-53.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://codeocean.com/.

  2. 2.

    https://wholetale.org/.

  3. 3.

    https://mybinder.org/.

  4. 4.

    https://singularitynet.io/.

  5. 5.

    https://www.platon.network/.

  6. 6.

    https://fetch.ai/.

References

  1. Bag, R., Spilak, B., Winkel, J., Härdle, W.K.: Quantinar: a blockchain p2p ecosystem for honest scientific research. arXiv preprint arXiv:2211.11525 (2022)

  2. Bathen, L.A.D., Jadav, D.: Trustless AutoML for the age of internet of things. In: 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 1–3. IEEE (2022)

    Google Scholar 

  3. Coelho, R., Braga, R., David, J.M.N., Dantas, M., Ströele, V., Campos, F.: Blockchain for reliability in collaborative scientific workflows on cloud platforms. In: 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1–7. IEEE (2020)

    Google Scholar 

  4. Coelho, R., Braga, R., David, J.M.N., Stroele, V., Campos, F., Dantas, M.: A blockchain-based architecture for trust in collaborative scientific experimentation. J. Grid Comput. 20(4), 35 (2022)

    Article  Google Scholar 

  5. Filatovas, E., Marcozzi, M., Mostarda, L., Paulavičius, R.: A MCDM-based framework for blockchain consensus protocol selection. Expert Syst. Appl. 204, 117609 (2022)

    Article  MATH  Google Scholar 

  6. Gundersen, O.E., Shamsaliei, S., Isdahl, R.J.: Do machine learning platforms provide out-of-the-box reproducibility? Futur. Gener. Comput. Syst. 126, 34–47 (2022)

    Article  MATH  Google Scholar 

  7. Harris, J.D., Waggoner, B.: Decentralized and collaborative AI on blockchain. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 368–375. IEEE (2019)

    Google Scholar 

  8. Hoopes, R., Hardy, H., Long, M., Dagher, G.G.: Sciledger: a blockchain-based scientific workflow provenance and data sharing platform. In: 2022 IEEE 8th International Conference on Collaboration and Internet Computing (CIC), pp. 125–134. IEEE (2022)

    Google Scholar 

  9. Hutson, M.: Artificial intelligence faces reproducibility crisis. Science 359(6377) (2018)

    Google Scholar 

  10. Kannan, K., Singh, A., Verma, M., Jayachandran, P., Mehta, S.: Blockchain-based platform for trusted collaborations on data and AI models. In: 2020 IEEE International Conference on Blockchain (Blockchain), pp. 82–89. IEEE (2020)

    Google Scholar 

  11. Khoi Tran, N., Sabir, B., Babar, M.A., Cui, N., Abolhasan, M., Lipman, J.: ProML: a decentralised platform for provenance management of machine learning software systems. In: Gerostathopoulos, I., Lewis, G., Batista, T., Bureš, T. (eds.) ECSA 2022. LNCS, vol. 13444, pp. 49–65. Springer, Cham (2022). doi: https://doi.org/10.1007/978-3-031-16697-6_4

  12. Li, Y., Chen, C., Liu, N., Huang, H., Zheng, Z., Yan, Q.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Network 35(1), 234–241 (2021)

    Article  MATH  Google Scholar 

  13. Lo, S.K., et al.: Towards trustworthy AI: blockchain-based architecture design for accountability and fairness of federated learning systems. IEEE Internet Things J. (2022)

    Google Scholar 

  14. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Industr. Inf. 16(6), 4177–4186 (2019)

    Article  MATH  Google Scholar 

  15. Lüthi, P., Gagnaux, T., Gygli, M.: Distributed ledger for provenance tracking of artificial intelligence assets. In: Friedewald, M., Önen, M., Lievens, E., Krenn, S., Fricker, S. (eds.) Privacy and Identity 2019. IAICT, vol. 576, pp. 411–426. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42504-3_26

    Chapter  Google Scholar 

  16. Meng, Q., Sun, R.: Towards secure and efficient scientific research project management using consortium blockchain. J. Signal Process. Syst. 93, 323–332 (2021)

    Article  MATH  Google Scholar 

  17. Mora-Cantallops, M., Sánchez-Alonso, S., García-Barriocanal, E., Sicilia, M.A.: Traceability for trustworthy AI: a review of models and tools. Big Data Cogn. Comput. 5(2), 20 (2021)

    Article  MATH  Google Scholar 

  18. Mothukuri, V., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Choo, K.K.R.: FabricFL: blockchain-in-the-loop federated learning for trusted decentralized systems. IEEE Syst. J. 16(3), 3711–3722 (2021)

    Article  Google Scholar 

  19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  20. Paulavičius, R., Grigaitis, S., Igumenov, A., Filatovas, E.: A decade of blockchain: review of the current status, challenges, and future directions. Informatica 30(4), 729–748 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pimentel, J.F., Murta, L., Braganholo, V., Freire, J.: A large-scale study about quality and reproducibility of jupyter notebooks. In: 2019 IEEE/ACM 16th International Conference on Mining Software repositories (MSR), pp. 507–517. IEEE (2019)

    Google Scholar 

  22. Rowhani-Farid, A., Barnett, A.G.: Badges for sharing data and code at biostatistics: an observational study. F1000Research 7, 2 (2018)

    Google Scholar 

  23. Sarpatwar, K., et al.: Towards enabling trusted artificial intelligence via blockchain. In: Calo, S., Bertino, E., Verma, D. (eds.) Policy-Based Autonomic Data Governance. LNCS, vol. 11550, pp. 137–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17277-0_8

    Chapter  Google Scholar 

  24. Stodt, J., Stodt, F., Reich, C., Clarke, N.: Verifiable machine learning models in industrial IoT via blockchain. In: Proceedings of the 12th International Advanced Computing Conference, Hyderabad, Telangana, pp. 16–17 (2022)

    Google Scholar 

  25. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. ACM SIGKDD Explorations Newsl 15(2), 49–60 (2014)

    Article  MATH  Google Scholar 

  26. Vartak, M., et al.: ModelDB: a system for machine learning model management. In: Proceedings of the Workshop on Human-In-the-Loop Data Analytics, pp. 1–3 (2016)

    Google Scholar 

  27. Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans. Dependable Secure Comput. 18(5), 2438–2455 (2019)

    MATH  Google Scholar 

Download references

Acknowledgements

This research has received funding from the Research Council of Lithuania (LMTLT), agreement No. S-MIP-21-53.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernestas Filatovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filatovas, E., Stripinis, L., Orts, F., Paulavičius, R. (2025). Towards Reproducible Research in Machine Learning via Blockchain. In: Sergeyev, Y.D., Kvasov, D.E., Astorino, A. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2023. Lecture Notes in Computer Science, vol 14478. Springer, Cham. https://doi.org/10.1007/978-3-031-81247-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81247-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81246-0

  • Online ISBN: 978-3-031-81247-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics