Skip to main content

Modelling Hyperentanglement for Quantum Information Processes

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2023)

Abstract

Entanglement is a very useful phenomenon for quantum information processes. When more than one degree of freedom (DOF) is entangled, the hyperentanglement is realized. The main advantage of hyperentanglement is that of being able to encode a greater amount of information by exploiting the quantum coherence. This advantage is due to the fact that it is possible to extract information for each DOF. We propose to model a hyperentangled state through copies of a Bell state and evaluate its functionality transferring a quantum state through a classical channel. The goal is to simulate the transport of a hyperentangled state through a classical channel in the presence of a system-environment interaction. By virtue of an increased Hilbert space following the increase in the DOF, the entanglement quantifier, the so called concurrence, decays slower with the distance compared to the case of one DOF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement. Phys. Rev. A 75(4), 042317 (2007)

    Article  MATH  Google Scholar 

  2. Barbieri, M., Cinelli, C., Mataloni, P., De Martini, F.: Polarization-momentum hyperentangled states: realization and characterization. Phys. Rev. A 72(5), 052110 (2005)

    Article  MATH  Google Scholar 

  3. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95(26), 260501 (2005)

    Article  MATH  Google Scholar 

  4. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282–286 (2008)

    Article  Google Scholar 

  5. Bennett, C.H., Brassard, G.: C. cr epeau, r. jozsa, a. peres and wk wootters. Phys. Rev. Lett. 70, 1895 (1993)

    Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  MATH  Google Scholar 

  7. Eberly, J.H., Narozhny, N., Sanchez-Mondragon, J.: Periodic spontaneous collapse and revival in a simple quantum model. Phys. Rev. Lett. 44(20), 1323 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, B.L., Zhan, Y.B.: Generation of hyperentangled states between remote noninteracting atomic ions. Phys. Rev. A 82(5), 054301 (2010)

    Article  MATH  Google Scholar 

  11. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Article  MATH  Google Scholar 

  12. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  MATH  Google Scholar 

  13. Kwiat, P.G., Weinfurter, H.: Embedded bell-state analysis. Phys. Rev. A 58(4), R2623 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044304 (2010)

    Article  MATH  Google Scholar 

  15. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  MATH  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)

    Google Scholar 

  17. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond nv centers inside photonic crystal cavities. Laser Phys. Lett. 10(11), 115201 (2013)

    Article  Google Scholar 

  18. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    Article  MATH  Google Scholar 

  19. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20(22), 24664–24677 (2012)

    Article  MATH  Google Scholar 

  20. Salatino, L., Mariani, L., Attanasio, C., Pagano, S., Citro, R.: Dissipative dynamics in quantum key distribution. European Phys. J. Plus 138(6), 517 (2023)

    Article  Google Scholar 

  21. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics bell state analysis. Phys. Rev. Lett. 96(19), 190501 (2006)

    Article  Google Scholar 

  22. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 032307 (2010)

    Article  MATH  Google Scholar 

  23. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044305 (2010)

    Article  MATH  Google Scholar 

  24. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-bell-state analysis for quantum communication. Phys. Rev. A 82(3), 032318 (2010)

    Article  MATH  Google Scholar 

  25. Sheng, Y.-B., Guo, R., Pan, J., Zhou, L., Wang, X.-F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14(3), 963–978 (2015). https://doi.org/10.1007/s11128-015-0916-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89(25), 257901 (2002)

    Article  Google Scholar 

  27. Vallone, G., Ceccarelli, R., De Martini, F., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79(3), 030301 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Walborn, S., Pádua, S., Monken, C.: Hyperentanglement-assisted bell-state analysis. Phys. Rev. A 68(4), 042313 (2003)

    Article  MathSciNet  Google Scholar 

  29. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86(4), 042337 (2012)

    Article  MATH  Google Scholar 

  30. Wei, T.C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled bell-state analysis. Phys. Rev. A 75(6), 060305 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Salatino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salatino, L., Mariani, L., Attanasio, C., Pagano, S., Citro, R. (2025). Modelling Hyperentanglement for Quantum Information Processes. In: Sergeyev, Y.D., Kvasov, D.E., Astorino, A. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2023. Lecture Notes in Computer Science, vol 14478. Springer, Cham. https://doi.org/10.1007/978-3-031-81247-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81247-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81246-0

  • Online ISBN: 978-3-031-81247-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics