Abstract
Preparing the Gibbs state of an interacting quantum many-body system on noisy intermediate-scale quantum (NISQ) devices is a crucial task for exploring the thermodynamic properties in the quantum regime. It encompasses understanding protocols such as thermalization and out-of-equilibrium thermodynamics, as well as sampling from faithfully prepared Gibbs states could pave the way to providing useful resources for quantum algorithms. Variational quantum algorithms (VQAs) show the most promise in efficiently preparing Gibbs states, however, there are many different approaches that could be applied to effectively determine and prepare Gibbs states on a NISQ computer. In this paper, we provide a concise overview of the algorithms capable of preparing Gibbs states, including joint Hamiltonian evolution of a system–environment coupling, quantum imaginary time evolution, and modern VQAs utilizing the Helmholtz free energy as a cost function, among others. Furthermore, we perform a benchmark of one of the latest variational Gibbs state preparation algorithms, developed by Consiglio et al. [16], by applying it to the spin-1/2 one-dimensional XY model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985). https://doi.org/10.1016/s0364-0213(85)80012-4
Aharonov, D., Arad, I., Vidick, T.: Guest column: the quantum PCP conjecture. SIGACT News 44(2), 47–79 (2013). https://doi.org/10.1145/2491533.2491549
Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018). https://doi.org/10.1103/PhysRevX.8.021050
Anshu, A., Arunachalam, S., Kuwahara, T., Soleimanifar, M.: Sample-efficient learning of interacting quantum systems. Nat. Phys. 17(8), 931–935 (2021). https://doi.org/10.1038/s41567-021-01232-0
Bardet, I., Capel, A., Gao, L., Lucia, A., Pérez-García, D., Rouzé, C.: Rapid thermalization of spin chain commuting hamiltonians. Phys. Rev. Lett. 130, 060401 (2023). https://doi.org/10.1103/PhysRevLett.130.060401
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474
Bilgin, E., Boixo, S.: Preparing thermal states of quantum systems by dimension reduction. Phys. Rev. Lett. 105(17), 1–4 (2010). https://doi.org/10.1103/PhysRevLett.105.170405
Brandão, F.G.S.L., Kastoryano, M.J.: Finite correlation length implies efficient preparation of quantum thermal states. Commun. Math. Phys. 365(1), 1–16 (2019). https://doi.org/10.1007/s00220-018-3150-8
Brandão, F.G.S.L., Svore, K.: Quantum speed-ups for semidefinite programming (2016). https://doi.org/10.48550/arxiv.1609.05537
Chen, C.F., Kastoryano, M.J., Ao, F.G.S.L.B., Gilyén, A.: Quantum thermal state preparation (2023). https://doi.org/10.48550/arXiv.2303.18224
Chiang, C.F., Wocjan, P.: quantum algorithm for preparing thermal Gibbs states - detailed analysis (2010). https://doi.org/10.48550/arXiv.1001.1130
Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. 115(38), 9456–9461 (2018). https://doi.org/10.1073/pnas.1801723115
Chowdhury, A.N., Low, G.H., Wiebe, N.: A variational quantum algorithm for preparing quantum Gibbs states (2020). https://doi.org/10.48550/arXiv.2002.00055
Chowdhury, A.N., Somma, R.D.: Quantum algorithms for gibbs sampling and hitting-time estimation. Quant. Inf. Comput. 17(1-2), 41–64 (2017). https://doi.org/10.26421/qic17.1-2-3
Cohn, J., Yang, F., Najafi, K., Jones, B., Freericks, J.K.: Minimal effective Gibbs ansatz: a simple protocol for extracting an accurate thermal representation for quantum simulation. Phys. Rev. A 102, 022622 (2020). https://doi.org/10.1103/PhysRevA.102.022622
Consiglio, M., et al.: Variational Gibbs state preparation on NISQ devices (2023). https://doi.org/10.48550/arXiv.2303.11276
Consiglio, M.: Variational Gibbs State Preparation (2023). https://github.com/mirkoconsiglio/VariationalGibbsStatePreparation
Coopmans, L., Kikuchi, Y., Benedetti, M.: Predicting gibbs-state expectation values with pure thermal shadows. PRX Quantum 4, 010305 (2023). https://doi.org/10.1103/PRXQuantum.4.010305
Foldager, J., Pesah, A., Hansen, L.K.: Noise-assisted variational quantum thermalization. Sci. Rep. 12(1), 3862 (2022). https://doi.org/10.1038/s41598-022-07296-z
França, D.S.: Perfect sampling for quantum Gibbs states. Quant. Inf. Comput. 18(5-6), 361–388 (2018). https://doi.org/10.26421/qic18.5-6-1
Gacon, J., Zoufal, C., Carleo, G., Woerner, S.: Simultaneous perturbation stochastic approximation of the quantum fisher information. Quantum 5, 567 (2021). https://doi.org/10.22331/q-2021-10-20-567
Getelina, J.C., Gomes, N., Iadecola, T., Orth, P.P., Yao, Y.X.: Adaptive variational quantum minimally entangled typical thermal states for finite temperature simulations (2023). https://doi.org/10.48550/arXiv.2301.02592
Guo, X.Y., et al.: Variational quantum simulation of thermal statistical states on a superconducting quantum processer. Chin. Phys. B 32(1), 010307 (2023). https://doi.org/10.1088/1674-1056/aca7f3
Haug, T., Bharti, K.: Generalized quantum assisted simulator. Quant. Sci. Technol. 7(4), 045019 (2022). https://doi.org/10.1088/2058-9565/ac83e7
Huijgen, O., Coopmans, L., Najafi, P., Benedetti, M., Kappen, H.J.: Training quantum Boltzmann machines with the \(\beta \)-variational quantum eigensolver (2023). https://doi.org/10.48550/arXiv.2304.08631
Kālis, M., Locāns, A., Šikovs, R., Naseri, H., Ambainis, A.: A hybrid quantum-classical approach for inference on restricted Boltzmann machines (2023). https://doi.org/10.48550/arXiv.2304.12418
Kastoryano, M.J., Ao, F.G.S.L.B.: Quantum Gibbs Samplers: the commuting case (2016). https://doi.org/10.48550/arXiv.1409.3435
Kieferová, M., Wiebe, N.: Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A 96, 062327 (2017). https://doi.org/10.1103/PhysRevA.96.062327
Lee, C.K., Zhang, S.X., Hsieh, C.Y., Zhang, S., Shi, L.: Variational quantum simulations of finite-temperature dynamical properties via thermofield dynamics (2022). https://doi.org/10.48550/arXiv.2206.05571
Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407–466 (1961). https://doi.org/10.1016/0003-4916(61)90115-4
Liu, J.G., Mao, L., Zhang, P., Wang, L.: Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits. Mach. Learn. Sci. Technol. 2(2), 025011 (2021). https://doi.org/10.1088/2632-2153/aba19d
Lu, S., Bañuls, M.C., Cirac, J.I.: Algorithms for quantum simulation at finite energies. PRX Quant. 2, 020321 (2021). https://doi.org/10.1103/PRXQuantum.2.020321
Martyn, J., Swingle, B.: Product spectrum ansatz and the simplicity of thermal states. Phys. Rev. A 100(3), 1–10 (2019). https://doi.org/10.1103/PhysRevA.100.032107
McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. npj Quant. Inf. 5(1), 75 (2019). https://doi.org/10.1038/s41534-019-0187-2
Metcalf, M., Moussa, J.E., de Jong, W.A., Sarovar, M.: Engineered thermalization and cooling of quantum many-body systems. Phys. Rev. Res. 2, 023214 (2020). https://doi.org/10.1103/PhysRevResearch.2.023214
Motta, M., et al.: Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020). https://doi.org/10.1038/s41567-019-0704-4
Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, Itcs ’12, pp. 290-308. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2090236.2090261
Poulin, D., Wocjan, P.: Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett. 103(22), 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.220502
Premaratne, S.P., Matsuura, A.Y.: Engineering a cost function for real-world implementation of a variational quantum algorithm. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 278–285 (2020). https://doi.org/10.1109/qce49297.2020.00042
Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Rand. Struct. Algor. 9(1–2), 223–252 (1996). https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2\(<\)223::aid-rsa14\(>\)3.0.co;2-o
Rall, P., Wang, C., Wocjan, P.: Thermal State Preparation via Rounding Promises (2022). https://doi.org/10.48550/arXiv.2210.01670
Riera, A., Gogolin, C., Eisert, J.: Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108(8) (2012). https://doi.org/10.1103/PhysRevLett.108.080402
Sagastizabal, R., et al.: Variational preparation of finite-temperature states on a quantum computer. npj Quant. Inf. 7(1), 1–7 (2021). https://doi.org/10.1038/s41534-021-00468-1
Sewell, T.J., White, C.D., Swingle, B.: Thermal multi-scale entanglement renormalization ansatz for variational gibbs state preparation (2022). https://doi.org/10.48550/arXiv.2210.16419
Shabani, A., Neven, H.: Artificial quantum thermal bath: engineering temperature for a many-body quantum system. Phys. Rev. A 94, 052301 (2016). https://doi.org/10.1103/PhysRevA.94.052301
Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/sfcs.1994.365700
Shtanko, O., Movassagh, R.: Algorithms for Gibbs state preparation on noiseless and noisy random quantum circuits (2021). https://doi.org/10.48550/arXiv.2112.14688
Silva, T.L., Taddei, M.M., Carrazza, S., Aolita, L.: Fragmented imaginary-time evolution for early-stage quantum signal processors (2022). https://doi.org/10.48550/arXiv.2110.13180
Somma, R.D., Boixo, S., Barnum, H., Knill, E.: Quantum simulations of classical annealing processes. Phys. Rev. Lett. 101(13), 1–4 (2008). https://doi.org/10.1103/PhysRevLett.101.130504
Sun, S.N., Motta, M., Tazhigulov, R.N., Tan, A.T., Chan, G.K.L., Minnich, A.J.: Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution. PRX Quant. 2, 010317 (2021). https://doi.org/10.1103/PRXQuantum.2.010317
Tan, K.C.: Fast quantum imaginary time evolution (2020). https://doi.org/10.48550/arXiv.2009.1223
Temme, K., Osborne, T.J., Vollbrecht, K.G., Poulin, D., Verstraete, F.: Quantum Metropolis sampling. Nature 471(7336), 87–90 (2011). https://doi.org/10.1038/nature09770
Terhal, B.M., DiVincenzo, D.P.: Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61, 022301 (2000). https://doi.org/10.1103/PhysRevA.61.022301
Uhlmann, A.: Transition probability (fidelity) and its relatives. Found. Phys. 41(3), 288–298 (2011). https://doi.org/10.1007/s10701-009-9381-y
Verdon, G., Marks, J., Nanda, S., Leichenauer, S., Hidary, J.: Quantum Hamiltonian-based models and the variational quantum thermalizer algorithm (2019). https://doi.org/10.48550/arXiv.1910.02071
Wang, X., Feng, X., Hartung, T., Jansen, K., Stornati, P.: Critical behavior of Ising model by preparing thermal state on quantum computer (2023). https://doi.org/10.48550/arXiv.2302.14279
Wang, Y., Li, G., Wang, X.: Variational quantum gibbs state preparation with a truncated taylor series. Phys. Rev. Appl. 16(5), 1 (2021). https://doi.org/10.1103/PhysRevApplied.16.054035
Warren, A., Zhu, L., Mayhall, N.J., Barnes, E., Economou, S.E.: Adaptive variational algorithms for quantum Gibbs state preparation (2022). https://doi.org/10.48550/arXiv.2203.12757
Watrous, J.: Quantum computational complexity (2008). https://doi.org/10.48550/arxiv.0804.3401
Wocjan, P., Temme, K.: Szegedy walk unitaries for quantum maps (2021). https://doi.org/10.48550/arXiv.2107.07365
Wu, J., Hsieh, T.H.: Variational thermal quantum simulation via thermofield double states. Phys. Rev. Lett. 123(22), 1–7 (2019). https://doi.org/10.1103/PhysRevLett.123.220502
Yuan, X., Endo, S., Zhao, Q., Li, Y., Benjamin, S.C.: Theory of variational quantum simulation. Quantum 3, 1–41 (2019). https://doi.org/10.22331/q-2019-10-07-191
Yung, M.H., Aspuru-Guzik, A.: A quantum-quantum Metropolis algorithm. Proc. Natl. Acad. Sci. U. S. A. 109(3), 754–759 (2012). https://doi.org/10.1073/pnas.1111758109
Zhang, D., Bosse, J.L., Cubitt, T.: Dissipative quantum gibbs sampling (2023). https://doi.org/10.48550/arXiv.2304.04526
Zhu, D., et al.: Generation of thermofield double states and critical ground states with a quantum computer. Proc. Natl. Acad. Sci. U. S. A. 117(41), 25402–25406 (2020). https://doi.org/10.1073/pnas.2006337117
Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum Boltzmann machines. Quant. Mach. Intell. 3(1), 1–15 (2021). https://doi.org/10.1007/s42484-020-00033-7
Acknowledgments
MC would like to thank Jacopo Settino, Andrea Giordano, Carlo Mastroianni, Francesco Plastina, Salvatore Lorenzo, Sabrina Maniscalco, John Goold, and Tony J. G. Apollaro. MC acknowledges funding by TESS (Tertiary Education Scholarships Scheme), and project QVAQT (Quantum Variational Algorithms for Quantum Technologies) REP-2022-003 financed by the Malta Council for Science & Technology, for and on behalf of the Foundation for Science and Technology, through the FUSION: R&I Research Excellence Programme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Consiglio, M. (2025). Variational Quantum Algorithms for Gibbs State Preparation. In: Sergeyev, Y.D., Kvasov, D.E., Astorino, A. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2023. Lecture Notes in Computer Science, vol 14478. Springer, Cham. https://doi.org/10.1007/978-3-031-81247-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-81247-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81246-0
Online ISBN: 978-3-031-81247-7
eBook Packages: Computer ScienceComputer Science (R0)