Skip to main content

Variational Quantum Algorithms for Gibbs State Preparation

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14478))

  • 132 Accesses

Abstract

Preparing the Gibbs state of an interacting quantum many-body system on noisy intermediate-scale quantum (NISQ) devices is a crucial task for exploring the thermodynamic properties in the quantum regime. It encompasses understanding protocols such as thermalization and out-of-equilibrium thermodynamics, as well as sampling from faithfully prepared Gibbs states could pave the way to providing useful resources for quantum algorithms. Variational quantum algorithms (VQAs) show the most promise in efficiently preparing Gibbs states, however, there are many different approaches that could be applied to effectively determine and prepare Gibbs states on a NISQ computer. In this paper, we provide a concise overview of the algorithms capable of preparing Gibbs states, including joint Hamiltonian evolution of a system–environment coupling, quantum imaginary time evolution, and modern VQAs utilizing the Helmholtz free energy as a cost function, among others. Furthermore, we perform a benchmark of one of the latest variational Gibbs state preparation algorithms, developed by Consiglio et al. [16], by applying it to the spin-1/2 one-dimensional XY model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for boltzmann machines. Cogn. Sci. 9(1), 147–169 (1985). https://doi.org/10.1016/s0364-0213(85)80012-4

    Article  MATH  Google Scholar 

  2. Aharonov, D., Arad, I., Vidick, T.: Guest column: the quantum PCP conjecture. SIGACT News 44(2), 47–79 (2013). https://doi.org/10.1145/2491533.2491549

    Article  MathSciNet  MATH  Google Scholar 

  3. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018). https://doi.org/10.1103/PhysRevX.8.021050

    Article  Google Scholar 

  4. Anshu, A., Arunachalam, S., Kuwahara, T., Soleimanifar, M.: Sample-efficient learning of interacting quantum systems. Nat. Phys. 17(8), 931–935 (2021). https://doi.org/10.1038/s41567-021-01232-0

    Article  Google Scholar 

  5. Bardet, I., Capel, A., Gao, L., Lucia, A., Pérez-García, D., Rouzé, C.: Rapid thermalization of spin chain commuting hamiltonians. Phys. Rev. Lett. 130, 060401 (2023). https://doi.org/10.1103/PhysRevLett.130.060401

    Article  MathSciNet  MATH  Google Scholar 

  6. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474

    Article  MATH  Google Scholar 

  7. Bilgin, E., Boixo, S.: Preparing thermal states of quantum systems by dimension reduction. Phys. Rev. Lett. 105(17), 1–4 (2010). https://doi.org/10.1103/PhysRevLett.105.170405

    Article  MATH  Google Scholar 

  8. Brandão, F.G.S.L., Kastoryano, M.J.: Finite correlation length implies efficient preparation of quantum thermal states. Commun. Math. Phys. 365(1), 1–16 (2019). https://doi.org/10.1007/s00220-018-3150-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandão, F.G.S.L., Svore, K.: Quantum speed-ups for semidefinite programming (2016). https://doi.org/10.48550/arxiv.1609.05537

  10. Chen, C.F., Kastoryano, M.J., Ao, F.G.S.L.B., Gilyén, A.: Quantum thermal state preparation (2023). https://doi.org/10.48550/arXiv.2303.18224

  11. Chiang, C.F., Wocjan, P.: quantum algorithm for preparing thermal Gibbs states - detailed analysis (2010). https://doi.org/10.48550/arXiv.1001.1130

  12. Childs, A.M., Maslov, D., Nam, Y., Ross, N.J., Su, Y.: Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. 115(38), 9456–9461 (2018). https://doi.org/10.1073/pnas.1801723115

    Article  MathSciNet  MATH  Google Scholar 

  13. Chowdhury, A.N., Low, G.H., Wiebe, N.: A variational quantum algorithm for preparing quantum Gibbs states (2020). https://doi.org/10.48550/arXiv.2002.00055

  14. Chowdhury, A.N., Somma, R.D.: Quantum algorithms for gibbs sampling and hitting-time estimation. Quant. Inf. Comput. 17(1-2), 41–64 (2017). https://doi.org/10.26421/qic17.1-2-3

  15. Cohn, J., Yang, F., Najafi, K., Jones, B., Freericks, J.K.: Minimal effective Gibbs ansatz: a simple protocol for extracting an accurate thermal representation for quantum simulation. Phys. Rev. A 102, 022622 (2020). https://doi.org/10.1103/PhysRevA.102.022622

    Article  Google Scholar 

  16. Consiglio, M., et al.: Variational Gibbs state preparation on NISQ devices (2023). https://doi.org/10.48550/arXiv.2303.11276

  17. Consiglio, M.: Variational Gibbs State Preparation (2023). https://github.com/mirkoconsiglio/VariationalGibbsStatePreparation

  18. Coopmans, L., Kikuchi, Y., Benedetti, M.: Predicting gibbs-state expectation values with pure thermal shadows. PRX Quantum 4, 010305 (2023). https://doi.org/10.1103/PRXQuantum.4.010305

    Article  Google Scholar 

  19. Foldager, J., Pesah, A., Hansen, L.K.: Noise-assisted variational quantum thermalization. Sci. Rep. 12(1), 3862 (2022). https://doi.org/10.1038/s41598-022-07296-z

    Article  MATH  Google Scholar 

  20. França, D.S.: Perfect sampling for quantum Gibbs states. Quant. Inf. Comput. 18(5-6), 361–388 (2018). https://doi.org/10.26421/qic18.5-6-1

  21. Gacon, J., Zoufal, C., Carleo, G., Woerner, S.: Simultaneous perturbation stochastic approximation of the quantum fisher information. Quantum 5, 567 (2021). https://doi.org/10.22331/q-2021-10-20-567

  22. Getelina, J.C., Gomes, N., Iadecola, T., Orth, P.P., Yao, Y.X.: Adaptive variational quantum minimally entangled typical thermal states for finite temperature simulations (2023). https://doi.org/10.48550/arXiv.2301.02592

  23. Guo, X.Y., et al.: Variational quantum simulation of thermal statistical states on a superconducting quantum processer. Chin. Phys. B 32(1), 010307 (2023). https://doi.org/10.1088/1674-1056/aca7f3

    Article  Google Scholar 

  24. Haug, T., Bharti, K.: Generalized quantum assisted simulator. Quant. Sci. Technol. 7(4), 045019 (2022). https://doi.org/10.1088/2058-9565/ac83e7

    Article  MATH  Google Scholar 

  25. Huijgen, O., Coopmans, L., Najafi, P., Benedetti, M., Kappen, H.J.: Training quantum Boltzmann machines with the \(\beta \)-variational quantum eigensolver (2023). https://doi.org/10.48550/arXiv.2304.08631

  26. Kālis, M., Locāns, A., Šikovs, R., Naseri, H., Ambainis, A.: A hybrid quantum-classical approach for inference on restricted Boltzmann machines (2023). https://doi.org/10.48550/arXiv.2304.12418

  27. Kastoryano, M.J., Ao, F.G.S.L.B.: Quantum Gibbs Samplers: the commuting case (2016). https://doi.org/10.48550/arXiv.1409.3435

  28. Kieferová, M., Wiebe, N.: Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A 96, 062327 (2017). https://doi.org/10.1103/PhysRevA.96.062327

    Article  MATH  Google Scholar 

  29. Lee, C.K., Zhang, S.X., Hsieh, C.Y., Zhang, S., Shi, L.: Variational quantum simulations of finite-temperature dynamical properties via thermofield dynamics (2022). https://doi.org/10.48550/arXiv.2206.05571

  30. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16(3), 407–466 (1961). https://doi.org/10.1016/0003-4916(61)90115-4

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, J.G., Mao, L., Zhang, P., Wang, L.: Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits. Mach. Learn. Sci. Technol. 2(2), 025011 (2021). https://doi.org/10.1088/2632-2153/aba19d

    Article  MATH  Google Scholar 

  32. Lu, S., Bañuls, M.C., Cirac, J.I.: Algorithms for quantum simulation at finite energies. PRX Quant. 2, 020321 (2021). https://doi.org/10.1103/PRXQuantum.2.020321

    Article  Google Scholar 

  33. Martyn, J., Swingle, B.: Product spectrum ansatz and the simplicity of thermal states. Phys. Rev. A 100(3), 1–10 (2019). https://doi.org/10.1103/PhysRevA.100.032107

    Article  MathSciNet  MATH  Google Scholar 

  34. McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. npj Quant. Inf. 5(1), 75 (2019). https://doi.org/10.1038/s41534-019-0187-2

  35. Metcalf, M., Moussa, J.E., de Jong, W.A., Sarovar, M.: Engineered thermalization and cooling of quantum many-body systems. Phys. Rev. Res. 2, 023214 (2020). https://doi.org/10.1103/PhysRevResearch.2.023214

    Article  Google Scholar 

  36. Motta, M., et al.: Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020). https://doi.org/10.1038/s41567-019-0704-4

    Article  MATH  Google Scholar 

  37. Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, Itcs ’12, pp. 290-308. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2090236.2090261

  38. Poulin, D., Wocjan, P.: Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. Phys. Rev. Lett. 103(22), 1–4 (2009). https://doi.org/10.1103/PhysRevLett.103.220502

    Article  MathSciNet  MATH  Google Scholar 

  39. Premaratne, S.P., Matsuura, A.Y.: Engineering a cost function for real-world implementation of a variational quantum algorithm. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 278–285 (2020). https://doi.org/10.1109/qce49297.2020.00042

  40. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Rand. Struct. Algor. 9(1–2), 223–252 (1996). https://doi.org/10.1002/(sici)1098-2418(199608/09)9:1/2\(<\)223::aid-rsa14\(>\)3.0.co;2-o

    Google Scholar 

  41. Rall, P., Wang, C., Wocjan, P.: Thermal State Preparation via Rounding Promises (2022). https://doi.org/10.48550/arXiv.2210.01670

  42. Riera, A., Gogolin, C., Eisert, J.: Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108(8) (2012). https://doi.org/10.1103/PhysRevLett.108.080402

  43. Sagastizabal, R., et al.: Variational preparation of finite-temperature states on a quantum computer. npj Quant. Inf. 7(1), 1–7 (2021). https://doi.org/10.1038/s41534-021-00468-1

  44. Sewell, T.J., White, C.D., Swingle, B.: Thermal multi-scale entanglement renormalization ansatz for variational gibbs state preparation (2022). https://doi.org/10.48550/arXiv.2210.16419

  45. Shabani, A., Neven, H.: Artificial quantum thermal bath: engineering temperature for a many-body quantum system. Phys. Rev. A 94, 052301 (2016). https://doi.org/10.1103/PhysRevA.94.052301

    Article  MATH  Google Scholar 

  46. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994). https://doi.org/10.1109/sfcs.1994.365700

  47. Shtanko, O., Movassagh, R.: Algorithms for Gibbs state preparation on noiseless and noisy random quantum circuits (2021). https://doi.org/10.48550/arXiv.2112.14688

  48. Silva, T.L., Taddei, M.M., Carrazza, S., Aolita, L.: Fragmented imaginary-time evolution for early-stage quantum signal processors (2022). https://doi.org/10.48550/arXiv.2110.13180

  49. Somma, R.D., Boixo, S., Barnum, H., Knill, E.: Quantum simulations of classical annealing processes. Phys. Rev. Lett. 101(13), 1–4 (2008). https://doi.org/10.1103/PhysRevLett.101.130504

    Article  MATH  Google Scholar 

  50. Sun, S.N., Motta, M., Tazhigulov, R.N., Tan, A.T., Chan, G.K.L., Minnich, A.J.: Quantum computation of finite-temperature static and dynamical properties of spin systems using quantum imaginary time evolution. PRX Quant. 2, 010317 (2021). https://doi.org/10.1103/PRXQuantum.2.010317

    Article  Google Scholar 

  51. Tan, K.C.: Fast quantum imaginary time evolution (2020). https://doi.org/10.48550/arXiv.2009.1223

  52. Temme, K., Osborne, T.J., Vollbrecht, K.G., Poulin, D., Verstraete, F.: Quantum Metropolis sampling. Nature 471(7336), 87–90 (2011). https://doi.org/10.1038/nature09770

    Article  MATH  Google Scholar 

  53. Terhal, B.M., DiVincenzo, D.P.: Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61, 022301 (2000). https://doi.org/10.1103/PhysRevA.61.022301

    Article  MATH  Google Scholar 

  54. Uhlmann, A.: Transition probability (fidelity) and its relatives. Found. Phys. 41(3), 288–298 (2011). https://doi.org/10.1007/s10701-009-9381-y

    Article  MathSciNet  MATH  Google Scholar 

  55. Verdon, G., Marks, J., Nanda, S., Leichenauer, S., Hidary, J.: Quantum Hamiltonian-based models and the variational quantum thermalizer algorithm (2019). https://doi.org/10.48550/arXiv.1910.02071

  56. Wang, X., Feng, X., Hartung, T., Jansen, K., Stornati, P.: Critical behavior of Ising model by preparing thermal state on quantum computer (2023). https://doi.org/10.48550/arXiv.2302.14279

  57. Wang, Y., Li, G., Wang, X.: Variational quantum gibbs state preparation with a truncated taylor series. Phys. Rev. Appl. 16(5), 1 (2021). https://doi.org/10.1103/PhysRevApplied.16.054035

    Article  MATH  Google Scholar 

  58. Warren, A., Zhu, L., Mayhall, N.J., Barnes, E., Economou, S.E.: Adaptive variational algorithms for quantum Gibbs state preparation (2022). https://doi.org/10.48550/arXiv.2203.12757

  59. Watrous, J.: Quantum computational complexity (2008). https://doi.org/10.48550/arxiv.0804.3401

  60. Wocjan, P., Temme, K.: Szegedy walk unitaries for quantum maps (2021). https://doi.org/10.48550/arXiv.2107.07365

  61. Wu, J., Hsieh, T.H.: Variational thermal quantum simulation via thermofield double states. Phys. Rev. Lett. 123(22), 1–7 (2019). https://doi.org/10.1103/PhysRevLett.123.220502

    Article  MATH  Google Scholar 

  62. Yuan, X., Endo, S., Zhao, Q., Li, Y., Benjamin, S.C.: Theory of variational quantum simulation. Quantum 3, 1–41 (2019). https://doi.org/10.22331/q-2019-10-07-191

  63. Yung, M.H., Aspuru-Guzik, A.: A quantum-quantum Metropolis algorithm. Proc. Natl. Acad. Sci. U. S. A. 109(3), 754–759 (2012). https://doi.org/10.1073/pnas.1111758109

    Article  MATH  Google Scholar 

  64. Zhang, D., Bosse, J.L., Cubitt, T.: Dissipative quantum gibbs sampling (2023). https://doi.org/10.48550/arXiv.2304.04526

  65. Zhu, D., et al.: Generation of thermofield double states and critical ground states with a quantum computer. Proc. Natl. Acad. Sci. U. S. A. 117(41), 25402–25406 (2020). https://doi.org/10.1073/pnas.2006337117

    Article  MathSciNet  MATH  Google Scholar 

  66. Zoufal, C., Lucchi, A., Woerner, S.: Variational quantum Boltzmann machines. Quant. Mach. Intell. 3(1), 1–15 (2021). https://doi.org/10.1007/s42484-020-00033-7

    Article  Google Scholar 

Download references

Acknowledgments

MC would like to thank Jacopo Settino, Andrea Giordano, Carlo Mastroianni, Francesco Plastina, Salvatore Lorenzo, Sabrina Maniscalco, John Goold, and Tony J. G. Apollaro. MC acknowledges funding by TESS (Tertiary Education Scholarships Scheme), and project QVAQT (Quantum Variational Algorithms for Quantum Technologies) REP-2022-003 financed by the Malta Council for Science & Technology, for and on behalf of the Foundation for Science and Technology, through the FUSION: R&I Research Excellence Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Consiglio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Consiglio, M. (2025). Variational Quantum Algorithms for Gibbs State Preparation. In: Sergeyev, Y.D., Kvasov, D.E., Astorino, A. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2023. Lecture Notes in Computer Science, vol 14478. Springer, Cham. https://doi.org/10.1007/978-3-031-81247-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81247-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81246-0

  • Online ISBN: 978-3-031-81247-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics