Abstract
The proposed solution includes a detailed and novel description of a data mining model applied to the educational environment and an intuitive and easy-to-use software tool that implements it. This model starts with the presentation of the educational problem to be analyzed and ends by providing the alternatives of possible solutions, i.e., an end-to-end model. What is interesting and novel is that most of the complex tasks to be performed to achieve the objective have been automated using techniques such as Exploratory Data Analysis, ETL’s Scripts, Automated Machine Learning, and Automatic Interpretability and Explainability. In addition, the model takes into consideration the ethical standards that must be met in terms of privacy and security. This solution allows institutions to find patterns within the educational big data that allow them to understand the complexity of their problems and the main factors that generate them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Akpinar, N., Ramdas, A., Acar, U.: Analyzing Student Strategies In Blended Courses Using Clickstream Data, Cornell University (2020). Available: https://arxiv.org/abs/2006.00421, last accessed 2023/11/05
Williamson, B.: Big data en educación, San Sebastián de los Reyes (Madrid), Ediciones Morata, S. L. (2018)
Hutter, F., Autum (2022), Available: https://www.automl.org/. , last accessed 2024/07/22
Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2018), Available: https://christophm.github.io/interpretable-ml-book/
Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning, arXiv preprint (2018), Available: https://arxiv.org/abs/1702.08608, last accessed 2024/04/18
Castrillón, O., Sarache, W., Ruiz-Herrera, S.: Predicción del rendimiento académico por medio de técnicas de inteligencia artificial, Formación Universitaria, vol. 13, pp. 93–102, (2020), Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-50062020000100093&nrm=iso, last accessed 2023/11/29
Istvan, R., Lasagna, V.: Sistema informático para la detección temprana de deserción estudiantil universitaria, en Estudio sobre ingresantes de la UTN Regional La Plata, Revista: Innovación y Desarrollo Tecnológico y Social (IDTS); vol. 1, no. 2, ISSN: 2683–8559, pp. 1–15 (2019)
Liu, R., Tan, A.: Towards interpretable automated machine learning for STEM career prediction. JMDE J. Educ. Data Mining 12(2), 19–32 (2020)
Tsiakmaki, M., Georgios, K., Sotiris, K., Omiros, R.: Implementing AutoML in Educational Data Mining for Prediction Tasks. Appl. Sci., 10, 1–90 (2020). Available: https://doi.org/10.3390/app10010090, last accessed 2024/02/22
Aas, K., Jullum, M., Loland, A.: Explaining individual predictions when features are dependent: more accurate approximations to Shapley values. Artif. Intell. 298, 103502 (2021)
Scriven, A., Kedziora, D., Musial, K., Gabrys, B.: The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry, (2022). arXiv preprint, arXiv:2211.04148, , last accessed 2023/11/21
European Commission: New rules for Artificial Intelligence—Questions and Answers. (2024). Available: https://ec.europa.eu/commission/presscorner/detail/en/QANDA_21_1683, last accessed 2024/02/15
SecretetarÃa de Innovación.: Recomendaciones para una Inteligencia Artificial fiable. Jefatura de Gabinete de Ministros, República Argentina (2023)
Novillo Rangone, G., Molina, W.: EDM Architecture. UNViMe/edm-arch, Available: https://github.com/UNViMe/edm-arch. (2024), last accessed 2024/08/29
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Debnath, N.C., Novillo-Rangone, G.A., Montejano, G.A., Garis, A.G., Molina, W.R., Riesco, D. (2025). Advanced Data Mining Solution for Educational Decision Making. In: Hassanien, A.E., Rizk, R.Y., Darwish, A., Alshurideh, M.T.R., Snášel, V., Tolba, M.F. (eds) Proceedings of the 11th International Conference on Advanced Intelligent Systems and Informatics (AISI 2025). AISI 2025. Lecture Notes on Data Engineering and Communications Technologies, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-031-81308-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-81308-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81307-8
Online ISBN: 978-3-031-81308-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)