Skip to main content

Abstract

The proposed solution includes a detailed and novel description of a data mining model applied to the educational environment and an intuitive and easy-to-use software tool that implements it. This model starts with the presentation of the educational problem to be analyzed and ends by providing the alternatives of possible solutions, i.e., an end-to-end model. What is interesting and novel is that most of the complex tasks to be performed to achieve the objective have been automated using techniques such as Exploratory Data Analysis, ETL’s Scripts, Automated Machine Learning, and Automatic Interpretability and Explainability. In addition, the model takes into consideration the ethical standards that must be met in terms of privacy and security. This solution allows institutions to find patterns within the educational big data that allow them to understand the complexity of their problems and the main factors that generate them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akpinar, N., Ramdas, A., Acar, U.: Analyzing Student Strategies In Blended Courses Using Clickstream Data, Cornell University (2020). Available: https://arxiv.org/abs/2006.00421, last accessed 2023/11/05

  2. Williamson, B.: Big data en educación, San Sebastián de los Reyes (Madrid), Ediciones Morata, S. L. (2018)

    Google Scholar 

  3. Hutter, F., Autum (2022), Available: https://www.automl.org/. , last accessed 2024/07/22

  4. Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2018), Available: https://christophm.github.io/interpretable-ml-book/

  5. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning, arXiv preprint (2018), Available: https://arxiv.org/abs/1702.08608, last accessed 2024/04/18

  6. Castrillón, O., Sarache, W., Ruiz-Herrera, S.: Predicción del rendimiento académico por medio de técnicas de inteligencia artificial, Formación Universitaria, vol. 13, pp. 93–102, (2020), Available: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-50062020000100093&nrm=iso, last accessed 2023/11/29

  7. Istvan, R., Lasagna, V.: Sistema informático para la detección temprana de deserción estudiantil universitaria, en Estudio sobre ingresantes de la UTN Regional La Plata, Revista: Innovación y Desarrollo Tecnológico y Social (IDTS); vol. 1, no. 2, ISSN: 2683–8559, pp. 1–15 (2019)

    Google Scholar 

  8. Liu, R., Tan, A.: Towards interpretable automated machine learning for STEM career prediction. JMDE J. Educ. Data Mining 12(2), 19–32 (2020)

    MATH  Google Scholar 

  9. Tsiakmaki, M., Georgios, K., Sotiris, K., Omiros, R.: Implementing AutoML in Educational Data Mining for Prediction Tasks. Appl. Sci., 10, 1–90 (2020). Available: https://doi.org/10.3390/app10010090, last accessed 2024/02/22

  10. Aas, K., Jullum, M., Loland, A.: Explaining individual predictions when features are dependent: more accurate approximations to Shapley values. Artif. Intell. 298, 103502 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Scriven, A., Kedziora, D., Musial, K., Gabrys, B.: The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry, (2022). arXiv preprint, arXiv:2211.04148, , last accessed 2023/11/21

  12. European Commission: New rules for Artificial Intelligence—Questions and Answers. (2024). Available: https://ec.europa.eu/commission/presscorner/detail/en/QANDA_21_1683, last accessed 2024/02/15

  13. Secretetaría de Innovación.: Recomendaciones para una Inteligencia Artificial fiable. Jefatura de Gabinete de Ministros, República Argentina (2023)

    Google Scholar 

  14. Novillo Rangone, G., Molina, W.: EDM Architecture. UNViMe/edm-arch, Available: https://github.com/UNViMe/edm-arch. (2024), last accessed 2024/08/29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Debnath, N.C., Novillo-Rangone, G.A., Montejano, G.A., Garis, A.G., Molina, W.R., Riesco, D. (2025). Advanced Data Mining Solution for Educational Decision Making. In: Hassanien, A.E., Rizk, R.Y., Darwish, A., Alshurideh, M.T.R., Snášel, V., Tolba, M.F. (eds) Proceedings of the 11th International Conference on Advanced Intelligent Systems and Informatics (AISI 2025). AISI 2025. Lecture Notes on Data Engineering and Communications Technologies, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-031-81308-5_2

Download citation

Publish with us

Policies and ethics