Skip to main content

A Lightweight Predictive Maintenance Strategy for Marine HFO Purification Systems

  • Conference paper
  • First Online:
Information Systems (EMCIS 2024)

Abstract

The maritime industry heavily relies on vessel maintenance to ensure the operational integrity and safety, as it is responsible for transporting more than 80% of global trade. Despite the industry’s strong need for efficient maintenance techniques, there has been a noticeable gap in research regarding the use of data-driven methods to enhance vessel reliability. This study seeks to fill this gap, by examining the feasibility of deploying deep learning models to predict the Remaining Useful Life (RUL) of Heavy Fuel Oil (HFO) purification systems, taking into account also the challenges of the limited computational resources available on maritime vessels, as well as the substantial costs associated with implementing such models. Towards this direction, the impact of various optimization techniques (early stopping and pruning) on three state-of-the-art models (Long Short-Term Memory Network, Convolutional Neural Network, Autoencoders) was evaluated using operational vessel data provided by Laskaridis Shipping Co. Ltd., demonstrating the feasibility of deploying predictive maintenance (PdM) systems in real-world edge-constrained marine settings, potentially transforming maintenance practices and reducing operational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdul Jameel, A.G., Alkhateeb, A., Telalović, S., Elbaz, A.M., Roberts, W.L., Sarathy, S.M.: Environmental challenges and opportunities in marine engine heavy fuel oil combustion. In: Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), vol. 1, pp. 1047–1055. Springer (2019)

    Google Scholar 

  2. Allianz-Commercial: Safety and Shipping Review: Report Insights 2023: An annual review of trends and developments in shipping losses and safety (2023)

    Google Scholar 

  3. Angelopoulos, A., Giannopoulos, A., Nomikos, N., Kalafatelis, A., Hatziefremidis, A., Trakadas, P.: Federated learning-aided prognostics in the shipping 4.0: principles, workflow, and use cases. IEEE Access (2024)

    Google Scholar 

  4. Basri, E.I., Razak, I.H.A., Ab-Samat, H., Kamaruddin, S.: Preventive maintenance (PM) planning: a review. J. Qual. Maint. Eng. 23(2), 114–143 (2017). https://doi.org/10.1108/JQME-04-2016-0014

    Article  MATH  Google Scholar 

  5. Bosello, M., Falcomer, C., Rossi, C., Pau, G.: To charge or to sell? EV pack useful life estimation via LSTMs, CNNs, and autoencoders. Energies 16(6), 2837 (2023)

    Article  Google Scholar 

  6. Finlinson, A., Moschoyiannis, S.: Synthesis and pruning as a dynamic compression strategy for efficient deep neural networks. In: From Data to Models and Back: 9th International Symposium, DataMod 2020, Virtual Event, 20 October 2020, Revised Selected Papers 9, pp. 3–17. Springer (2021)

    Google Scholar 

  7. Foretich, A., Zaimes, G.G., Hawkins, T.R., Newes, E.: Challenges and opportunities for alternative fuels in the maritime sector. Marit. Transp. Res. 2, 100033 (2021)

    Article  Google Scholar 

  8. Gribbestad, M., Hassan, M.U., Hameed, I.A.: Transfer learning for prognostics and health management (PHM) of marine air compressors. J. Mar. Sci. Eng. 9(1), 47 (2021)

    Article  Google Scholar 

  9. Han, P., Ellefsen, A.L., Li, G., Æsøy, V., Zhang, H.: Fault prognostics using LSTM networks: application to marine diesel engine. IEEE Sens. J. 21(22), 25986–25994 (2021)

    Article  MATH  Google Scholar 

  10. Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22(241), 1–124 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Hohman, F., Kery, M.B., Ren, D., Moritz, D.: Model compression in practice: Lessons learned from practitioners creating on-device machine learning experiences. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–18 (2024)

    Google Scholar 

  12. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)

  13. Huang, Q., Tang, Z.: High-performance and lightweight AI model for robot vacuum cleaners with low bitwidth strong non-uniform quantization. AI 4(3), 531–550 (2023)

    Google Scholar 

  14. IMO: International convention for the safety of life at sea (SOLAS). International Maritime Organization, London (2002)

    Google Scholar 

  15. Kalafatelis, A.S., Nomikos, N., Angelopoulos, A., Trochoutsos, C., Trakadas, P.: An effective methodology for imbalanced data handling in predictive maintenance for offset printing. In: International Conference on Mechatronics and Control Engineering, pp. 89–98. Springer (2023)

    Google Scholar 

  16. Kandemir, Ç., Çelik, M., Akyuz, E., Aydin, O.: Application of human reliability analysis to repair & maintenance operations on-board ships: the case of HFO purifier overhauling. Appl. Ocean Res. 88, 317–325 (2019)

    Article  Google Scholar 

  17. Kulkarni, K., Goerlandt, F., Li, J., Banda, O.V., Kujala, P.: Preventing shipping accidents: past, present, and future of waterway risk management with Baltic sea focus. Saf. Sci. 129, 104798 (2020)

    Article  MATH  Google Scholar 

  18. Lazakis, I., Ölçer, A.: Selection of the best maintenance approach in the maritime industry under fuzzy multiple attributive group decision-making environment. Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ. 230(2), 297–309 (2016)

    MATH  Google Scholar 

  19. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  20. Liu, B., Gan, H., Chen, D., Shu, Z.: Research on fault early warning of marine diesel engine based on CNN-BiGRU. J. Mar. Sci. Eng. 11(1), 56 (2022)

    Article  MATH  Google Scholar 

  21. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  22. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: systems, purposes and approaches. arXiv preprint arXiv:1912.07383 (2019)

  23. Sepehri, A., Vandchali, H.R., Siddiqui, A.W., Montewka, J.: The impact of shipping 4.0 on controlling shipping accidents: a systematic literature review. Ocean Eng. 243, 110162 (2022)

    Google Scholar 

  24. Swanson, L.: Linking maintenance strategies to performance. Int. J. Prod. Econ. 70(3), 237–244 (2001). https://doi.org/10.1016/S0925-5273(00)00067-0

    Article  MATH  Google Scholar 

  25. Unctad: Review of maritime transport 2021. UN (2021)

    Google Scholar 

  26. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878 (2017)

  27. Zonta, T., Da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S., Li, G.P.: Predictive maintenance in the industry 4.0: a systematic literature review. Comput. Ind. Eng. 150, 106889 (2020). https://doi.org/10.1016/j.cie.2020.106889

Download references

Acknowledgement

The authors would like to thank Laskaridis Shipping Co. Ltd. for the data provisioning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros S. Kalafatelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalafatelis, A.S. et al. (2025). A Lightweight Predictive Maintenance Strategy for Marine HFO Purification Systems. In: Themistocleous, M., Bakas, N., Kokosalakis, G., Papadaki, M. (eds) Information Systems. EMCIS 2024. Lecture Notes in Business Information Processing, vol 535. Springer, Cham. https://doi.org/10.1007/978-3-031-81322-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81322-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81321-4

  • Online ISBN: 978-3-031-81322-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics