Abstract
This paper presents a novel approach to enhancing user experience (UX) in automated environments through Aspect-Based Sentiment Analysis (ABSA), a subfield of Natural Language Processing (NLP). With advanced AI technologies, ABSA analyzes text for general sentiment and extracts and evaluates sentiments tied to specific aspects or features discussed in the text. Our research aims to evaluate the effectiveness of ABSA as a tool for informed UX decision-making in design processes. In this collaborative effort, we compiled a dataset of 8,060 tweets from 2016 to 2023 using keywords related to automation and smart workplaces. After rigorous pre-processing, we utilized structured tweets for aspect extraction. Six different pre-trained or finetuned ABSA models were employed to analyze these tweets, focusing on their utility in refining UX. Our findings highlight how ABSA can be leveraged to enhance user interactions. We propose a set of strategic recommendations to help researchers and decision-makers identify strengths and weaknesses in their automated systems. Ultimately, we present an organizational life cycle model that utilizes sentiment classification to refine UX strategies, facilitating better AI integration in user-centric designs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Wankhade, M., Rao, A.C.S., Kulkarni, C.: A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev. 55, 5731–5780 (2022). https://doi.org/10.1007/s10462-022-10144-1
Nguyen, T.H., Shirai, K.: PhraseRNN: phrase recursive neural network for aspect-based sentiment analysis. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2509–2514. Association for Computational Linguistics, Lisbon, Portugal (2015). https://doi.org/10.18653/v1/D15-1298
Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Publishers Inc. (2008). https://doi.org/10.1561/9781601981516
Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent Twitter sentiment classification. In: Lin, D., Matsumoto, Y., Mihalcea, R. (eds.) Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 151–160. Association for Computational Linguistics, Portland, Oregon, USA (2011)
Liu, B.: Sentiment Analysis and Opinion Mining. Springer, Cham (2012). https://doi.org/10.1007/978-3-031-02145-9
Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 28, 813–830 (2016). https://doi.org/10.1109/TKDE.2015.2485209
Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495. Association for Computational Linguistics, Denver, Colorado (2015). https://doi.org/10.18653/v1/S15-2082
Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. WIREs Data Min. Knowl. 8, e1253 (2018). https://doi.org/10.1002/widm.1253
Poria, S., Cambria, E., Howard, N., Huang, G.-B., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174, 50–59 (2016). https://doi.org/10.1016/j.neucom.2015.01.095
Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random fields for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 616–626. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1059
Zhou, X., Wan, X., Xiao, J.: Attention-based LSTM network for cross-lingual sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 247–256. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1024
He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Exploiting document knowledge for aspect-level sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 579–585. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-2092
Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2514–2523. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-1234
Ruder, S., Ghaffari, P., Breslin, J.G.: A hierarchical model of reviews for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on Empirical Methods in NaturalLanguage Processing, pp. 999–1005. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1103
Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_13
Balahur, A., Turchi, M.: Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Comput. Speech Lang. 28, 56–75 (2014). https://doi.org/10.1016/j.csl.2013.03.004
Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31, 102–107 (2016). https://doi.org/10.1109/MIS.2016.31
Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A.: Affective computing and sentiment analysis. In: Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A. (eds.) A Practical Guide to Sentiment Analysis, pp. 1–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55394-8_1
Zhuang, L., Jing, F., Zhu, X.-Y.: Movie review mining and summarization. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management - CIKM 2006, p. 43. ACM Press, Arlington, Virginia, USA (2006). https://doi.org/10.1145/1183614.1183625
Vaswani, A., et al.: Attention is all you need (2017). https://doi.org/10.48550/ARXIV.1706.03762
Kapoor, K.K., Tamilmani, K., Rana, N.P., Patil, P., Dwivedi, Y.K., Nerur, S.: Advances in social media research: past. Present Future Inf. Syst. Front. 20, 531–558 (2018). https://doi.org/10.1007/s10796-017-9810-y
Navarro, A., Tapiador, F.J.: Twitch as a privileged locus to analyze young people’s attitudes in the climate change debate: a quantitative analysis. Humanit. Soc. Sci. Commun. 10, 844 (2023). https://doi.org/10.1057/s41599-023-02377-4
Jahanbin, K., Chahooki, M.A.Z.: Aspect-based sentiment analysis of twitter influencers to predict the trend of cryptocurrencies based on hybrid deep transfer learning models. IEEE Access 11, 121656–121670 (2023). https://doi.org/10.1109/ACCESS.2023.3327060
Tahir, R., Naeem, M.A.: A machine learning based approach to identify user interests from social data. In: 2022 24th International Multitopic Conference (INMIC), pp. 1–6. IEEE, Islamabad, Pakistan (2022). https://doi.org/10.1109/INMIC56986.2022.9972956
Nallakaruppan, M.K., Srivastava, G., Gadekallu, T.R., Reddy, P.K., Krishnan, S., Polap, D.: Child tracking and prediction of violence on children in social media using natural language processing and machine learning. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 560–569. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42505-9_47
Schrauf, S., Berttram, P.: Industry 4.0 - How digitization makes the supply chain more efficient, agile, and customer-focused (2016). https://www.pwc.ch/en/publications/2017/how-digitization-makes-the-supply-chain-more-efficient-pwc-2016.pdf
Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58, 431–440 (2015). https://doi.org/10.1016/j.bushor.2015.03.008
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015). https://doi.org/10.1126/science.aaa8415
Westerman, G., Bonnet, D., McAfee, A.: Leading Digital: Turning Technology into Business Transformation. Harvard Business Review Press, Boston (2014)
Bosch Global: Ten years of Industry 4.0. https://www.bosch.com/stories/10-years-industry-4-0-at-bosch/. Accessed 25 Feb 2024
Rose, J., Lukic, V., Milon, T., Cappuzzo, A.: Sprinting to Value in Industry 4.0. https://www.bcg.com/publications/2016/lean-manufacturing-technology-digital-sprinting-to-value-industry-40. Accessed 25 Feb 2024
McKinsey: Advanced manufacturing and the promise of Industry 4.0 | McKinsey. https://www.mckinsey.com/capabilities/operations/our-insights/transforming-advanced-manufacturing-through-industry-4-0. Accessed 25 Feb 2024
Schwab, K.: The Fourth Industrial Revolution. https://www.weforum.org/pages/the-fourth-industrial-revolution-by-klaus-schwab/. Accessed 18 Apr 2022
Schwab, K.: The Fourth Industrial Revolution. Crown Business, New York (2017)
EDPS Supervisory: EDPS Supervisory Opinion on the Use of Social Media Monitoring for Epidemic Intelligence Purposes by The European Centre for Disease Prevention and Control (‘ECDC’) (2023). https://www.edps.europa.eu/system/files/2023-11/23-11-09_EDPS_Opinion_2021_0830_EN.pdf
Anwar, A., Rehman, I.U., Kostadinova Dicheva, N., Haq, I.U.: Analysing user experience of dynamic group formation (DGF) in intelligent tutor collaborative learning (ITSCL) using aspect-based sentiment analysis. In: XXIII International Conference on Human Computer Interaction, pp. 1–5. ACM, Lleida Spain (2023). https://doi.org/10.1145/3612783.3612788
Saadati, P., Abdelnour-Nocera, J., Clemmensen, T.: Co-designing prototypes for user experience and engagement in automation: case study of London-based airport future workplace. In: Bhutkar, G., et al. (eds.) Human Work Interaction Design. Artificial Intelligence and Designing for a Positive Work Experience in a Low Desire Society, pp. 158–177. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02904-2_8
Zhang, Z., Robinson, D., Tepper, J.: Detecting hate speech on twitter using a convolution-gru based deep neural network. In: Gangemi, A., et al. (eds.) The Semantic Web, pp. 745–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_48
Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural language processing. In: Proceedings of the 2019 Conference of the North, pp. 15–18. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-5004
Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6, 21–45 (2006). https://doi.org/10.1109/MCAS.2006.1688199
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Saadati, P., Husamaldin, L., Aladesuru, F., Nocera, J.A. (2025). Enhancing User Experience in Automated Systems Using Aspect-Based Sentiment Analysis. In: Themistocleous, M., Bakas, N., Kokosalakis, G., Papadaki, M. (eds) Information Systems. EMCIS 2024. Lecture Notes in Business Information Processing, vol 535. Springer, Cham. https://doi.org/10.1007/978-3-031-81322-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-81322-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-81321-4
Online ISBN: 978-3-031-81322-1
eBook Packages: Computer ScienceComputer Science (R0)