Skip to main content

Enhancing User Experience in Automated Systems Using Aspect-Based Sentiment Analysis

  • Conference paper
  • First Online:
Information Systems (EMCIS 2024)

Abstract

This paper presents a novel approach to enhancing user experience (UX) in automated environments through Aspect-Based Sentiment Analysis (ABSA), a subfield of Natural Language Processing (NLP). With advanced AI technologies, ABSA analyzes text for general sentiment and extracts and evaluates sentiments tied to specific aspects or features discussed in the text. Our research aims to evaluate the effectiveness of ABSA as a tool for informed UX decision-making in design processes. In this collaborative effort, we compiled a dataset of 8,060 tweets from 2016 to 2023 using keywords related to automation and smart workplaces. After rigorous pre-processing, we utilized structured tweets for aspect extraction. Six different pre-trained or finetuned ABSA models were employed to analyze these tweets, focusing on their utility in refining UX. Our findings highlight how ABSA can be leveraged to enhance user interactions. We propose a set of strategic recommendations to help researchers and decision-makers identify strengths and weaknesses in their automated systems. Ultimately, we present an organizational life cycle model that utilizes sentiment classification to refine UX strategies, facilitating better AI integration in user-centric designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wankhade, M., Rao, A.C.S., Kulkarni, C.: A survey on sentiment analysis methods, applications, and challenges. Artif. Intell. Rev. 55, 5731–5780 (2022). https://doi.org/10.1007/s10462-022-10144-1

    Article  MATH  Google Scholar 

  2. Nguyen, T.H., Shirai, K.: PhraseRNN: phrase recursive neural network for aspect-based sentiment analysis. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2509–2514. Association for Computational Linguistics, Lisbon, Portugal (2015). https://doi.org/10.18653/v1/D15-1298

  3. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Publishers Inc. (2008). https://doi.org/10.1561/9781601981516

  4. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent Twitter sentiment classification. In: Lin, D., Matsumoto, Y., Mihalcea, R. (eds.) Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 151–160. Association for Computational Linguistics, Portland, Oregon, USA (2011)

    Google Scholar 

  5. Liu, B.: Sentiment Analysis and Opinion Mining. Springer, Cham (2012). https://doi.org/10.1007/978-3-031-02145-9

  6. Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 28, 813–830 (2016). https://doi.org/10.1109/TKDE.2015.2485209

    Article  MATH  Google Scholar 

  7. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495. Association for Computational Linguistics, Denver, Colorado (2015). https://doi.org/10.18653/v1/S15-2082

  8. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. WIREs Data Min. Knowl. 8, e1253 (2018). https://doi.org/10.1002/widm.1253

    Article  MATH  Google Scholar 

  9. Poria, S., Cambria, E., Howard, N., Huang, G.-B., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174, 50–59 (2016). https://doi.org/10.1016/j.neucom.2015.01.095

    Article  Google Scholar 

  10. Wang, W., Pan, S.J., Dahlmeier, D., Xiao, X.: Recursive neural conditional random fields for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 616–626. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1059

  11. Zhou, X., Wan, X., Xiao, J.: Attention-based LSTM network for cross-lingual sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 247–256. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1024

  12. He, R., Lee, W.S., Ng, H.T., Dahlmeier, D.: Exploiting document knowledge for aspect-level sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 579–585. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-2092

  13. Xue, W., Li, T.: Aspect based sentiment analysis with gated convolutional networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2514–2523. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-1234

  14. Ruder, S., Ghaffari, P., Breslin, J.G.: A hierarchical model of reviews for aspect-based sentiment analysis. In: Proceedings of the 2016 Conference on Empirical Methods in NaturalLanguage Processing, pp. 999–1005. Association for Computational Linguistics, Austin, Texas (2016). https://doi.org/10.18653/v1/D16-1103

  15. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 415–463. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_13

  16. Balahur, A., Turchi, M.: Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Comput. Speech Lang. 28, 56–75 (2014). https://doi.org/10.1016/j.csl.2013.03.004

    Article  MATH  Google Scholar 

  17. Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31, 102–107 (2016). https://doi.org/10.1109/MIS.2016.31

    Article  MATH  Google Scholar 

  18. Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A.: Affective computing and sentiment analysis. In: Cambria, E., Das, D., Bandyopadhyay, S., Feraco, A. (eds.) A Practical Guide to Sentiment Analysis, pp. 1–10. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55394-8_1

  19. Zhuang, L., Jing, F., Zhu, X.-Y.: Movie review mining and summarization. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management - CIKM 2006, p. 43. ACM Press, Arlington, Virginia, USA (2006). https://doi.org/10.1145/1183614.1183625

  20. Vaswani, A., et al.: Attention is all you need (2017). https://doi.org/10.48550/ARXIV.1706.03762

  21. Kapoor, K.K., Tamilmani, K., Rana, N.P., Patil, P., Dwivedi, Y.K., Nerur, S.: Advances in social media research: past. Present Future Inf. Syst. Front. 20, 531–558 (2018). https://doi.org/10.1007/s10796-017-9810-y

    Article  Google Scholar 

  22. Navarro, A., Tapiador, F.J.: Twitch as a privileged locus to analyze young people’s attitudes in the climate change debate: a quantitative analysis. Humanit. Soc. Sci. Commun. 10, 844 (2023). https://doi.org/10.1057/s41599-023-02377-4

    Article  Google Scholar 

  23. Jahanbin, K., Chahooki, M.A.Z.: Aspect-based sentiment analysis of twitter influencers to predict the trend of cryptocurrencies based on hybrid deep transfer learning models. IEEE Access 11, 121656–121670 (2023). https://doi.org/10.1109/ACCESS.2023.3327060

    Article  Google Scholar 

  24. Tahir, R., Naeem, M.A.: A machine learning based approach to identify user interests from social data. In: 2022 24th International Multitopic Conference (INMIC), pp. 1–6. IEEE, Islamabad, Pakistan (2022). https://doi.org/10.1109/INMIC56986.2022.9972956

  25. Nallakaruppan, M.K., Srivastava, G., Gadekallu, T.R., Reddy, P.K., Krishnan, S., Polap, D.: Child tracking and prediction of violence on children in social media using natural language processing and machine learning. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) Artificial Intelligence and Soft Computing, pp. 560–569. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42505-9_47

  26. Schrauf, S., Berttram, P.: Industry 4.0 - How digitization makes the supply chain more efficient, agile, and customer-focused (2016). https://www.pwc.ch/en/publications/2017/how-digitization-makes-the-supply-chain-more-efficient-pwc-2016.pdf

  27. Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58, 431–440 (2015). https://doi.org/10.1016/j.bushor.2015.03.008

    Article  MATH  Google Scholar 

  28. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015). https://doi.org/10.1126/science.aaa8415

    Article  MathSciNet  MATH  Google Scholar 

  29. Westerman, G., Bonnet, D., McAfee, A.: Leading Digital: Turning Technology into Business Transformation. Harvard Business Review Press, Boston (2014)

    Google Scholar 

  30. Bosch Global: Ten years of Industry 4.0. https://www.bosch.com/stories/10-years-industry-4-0-at-bosch/. Accessed 25 Feb 2024

  31. Rose, J., Lukic, V., Milon, T., Cappuzzo, A.: Sprinting to Value in Industry 4.0. https://www.bcg.com/publications/2016/lean-manufacturing-technology-digital-sprinting-to-value-industry-40. Accessed 25 Feb 2024

  32. McKinsey: Advanced manufacturing and the promise of Industry 4.0 | McKinsey. https://www.mckinsey.com/capabilities/operations/our-insights/transforming-advanced-manufacturing-through-industry-4-0. Accessed 25 Feb 2024

  33. Schwab, K.: The Fourth Industrial Revolution. https://www.weforum.org/pages/the-fourth-industrial-revolution-by-klaus-schwab/. Accessed 18 Apr 2022

  34. Schwab, K.: The Fourth Industrial Revolution. Crown Business, New York (2017)

    MATH  Google Scholar 

  35. EDPS Supervisory: EDPS Supervisory Opinion on the Use of Social Media Monitoring for Epidemic Intelligence Purposes by The European Centre for Disease Prevention and Control (‘ECDC’) (2023). https://www.edps.europa.eu/system/files/2023-11/23-11-09_EDPS_Opinion_2021_0830_EN.pdf

  36. Anwar, A., Rehman, I.U., Kostadinova Dicheva, N., Haq, I.U.: Analysing user experience of dynamic group formation (DGF) in intelligent tutor collaborative learning (ITSCL) using aspect-based sentiment analysis. In: XXIII International Conference on Human Computer Interaction, pp. 1–5. ACM, Lleida Spain (2023). https://doi.org/10.1145/3612783.3612788

  37. Saadati, P., Abdelnour-Nocera, J., Clemmensen, T.: Co-designing prototypes for user experience and engagement in automation: case study of London-based airport future workplace. In: Bhutkar, G., et al. (eds.) Human Work Interaction Design. Artificial Intelligence and Designing for a Positive Work Experience in a Low Desire Society, pp. 158–177. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-02904-2_8

  38. Zhang, Z., Robinson, D., Tepper, J.: Detecting hate speech on twitter using a convolution-gru based deep neural network. In: Gangemi, A., et al. (eds.) The Semantic Web, pp. 745–760. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_48

  39. Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural language processing. In: Proceedings of the 2019 Conference of the North, pp. 15–18. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-5004

  40. Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6, 21–45 (2006). https://doi.org/10.1109/MCAS.2006.1688199

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Saadati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadati, P., Husamaldin, L., Aladesuru, F., Nocera, J.A. (2025). Enhancing User Experience in Automated Systems Using Aspect-Based Sentiment Analysis. In: Themistocleous, M., Bakas, N., Kokosalakis, G., Papadaki, M. (eds) Information Systems. EMCIS 2024. Lecture Notes in Business Information Processing, vol 535. Springer, Cham. https://doi.org/10.1007/978-3-031-81322-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81322-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81321-4

  • Online ISBN: 978-3-031-81322-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics