Skip to main content

IoT-Based Service Allocation in Edge Computing Using Game Theory

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2025)

Abstract

The rapid growth of the Internet of Things (IoT) has created a pressing need for efficient service allocation methods to manage the multitude of connected devices. Edge computing has become essential to fulfill the low-latency and high-bandwidth demands of IoT applications. This paper investigates the use of game theory as a framework for optimizing service allocation in edge computing environments. By treating the interactions between IoT devices and edge servers as a strategic game, we propose strategies to achieve optimal allocation and resource utilization. Our approach tackles key challenges such as minimizing latency, improving energy efficiency, and balancing load. Experimental results indicate that game-theoretic methods greatly improve the performance and scalability of IoT systems in edge computing, positioning them a promising solution for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, S., Jadoon, W., Khan, I.A.: Computing offloading strategy in mobile edge computing environment: a comparison between adopted frameworks, challenges, and future directions. Electronics 12(11) (2023). https://www.mdpi.com/2079-9292/12/11/2452

  2. Zamzam, M., El-Shabrawy, T., Ashour, M.: Game theory for computation offloading and resource allocation in edge computing: a survey. In: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 47–53 (2020)

    Google Scholar 

  3. Kumar, S., Goswami, A., Gupta, R., Singh, S.P., Lay-Ekuakille, A.: A cost-effective and QoS-aware user allocation approach for edge computing enabled IoT. IEEE Internet Things J. 10(2), 1696–1710 (2023)

    Article  MATH  Google Scholar 

  4. Mahmood, O.A., Abdellah, A.R., Muthanna, A., Koucheryavy, A.: Distributed edge computing for resource allocation in smart cities based on the IoT. Information 13(7) (2022). https://www.mdpi.com/2078-2489/13/7/328

  5. Zhou, H., Zhang, Z., Li, D., Su, Z.: Joint optimization of computing offloading and service caching in edge computing-based smart grid. IEEE Trans. Cloud Comput. 11(2), 1122–1132 (2023)

    Article  MATH  Google Scholar 

  6. Yu, H., Zhou, Z., Jia, Z., Zhao, X., Zhang, L., Wang, X.: Multi-timescale multi-dimension resource allocation for noma-edge computing-based power IoT with massive connectivity. IEEE Trans. Green Commun. Networking 5(3), 1101–1113 (2021)

    Article  MATH  Google Scholar 

  7. Jin, Z., Zhang, C., Jin, Y., Zhang, L., Su, J.: A resource allocation scheme for joint optimizing energy consumption and delay in collaborative edge computing-based industrial IoT. IEEE Trans. Industr. Inf. 18(9), 6236–6243 (2022)

    Article  MATH  Google Scholar 

  8. Hamdan, S., Ayyash, M., Almajali, S.: Edge-computing architectures for internet of things applications: a survey. Sensors 20(22) (2020). https://www.mdpi.com/1424-8220/20/22/6441

  9. Sinha, A., Mishra, V., Bandyopadhyay, A., Swain, S., Chakraborty, S.: Fair resource allocation in fog computing by using a game theoretic approach. In: Chaki, N., Roy, N.D., Debnath, P., Saeed, K. (eds.) Proceedings of International Conference on Data Analytics and Insights, ICDAI 2023, pp. 125–134. Springer, Singapore (2023)

    Google Scholar 

  10. Jazaeri, S.S., Jabbehdari, S., Asghari, P., et al.: Edge computing in SDN-IoT networks: a systematic review of issues, challenges and solutions. Clust. Comput. 24(6), 3187–3228 (2021). https://doi.org/10.1007/s10586-021-03311-6

    Article  MATH  Google Scholar 

  11. Bourechak, A., Zedadra, O., Kouahla, M.N., Guerrieri, A., Seridi, H., Fortino, G.: At the confluence of artificial intelligence and edge computing in IoT-based applications: a review and new perspectives. Sensors 23(3) (2023). https://www.mdpi.com/1424-8220/23/3/1639

  12. Ishtiaq, M., Saeed, N., Khan, M.A.: Edge computing in IoT: a 6G perspective. arXiv abs/2111.08943 (2021). https://api.semanticscholar.org/CorpusID:244269978

  13. Sihna, A., Raj, H., Das, R., Bandyopadhyay, A., Swain, S., Chakrborty, S.: Medical education system based on metaverse platform: a game theoretic approach. In: 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), pp. 1–6 (2023)

    Google Scholar 

  14. Bandyopadhyay, A., et al.: A game-theoretic approach for rendering immersive experiences in the metaverse. Mathematics 11(6) (2023). https://www.mdpi.com/2227-7390/11/6/1286

  15. Guo, M., Li, L., Guan, Q.: Energy-efficient and delay-guaranteed workload allocation in IoT-edge-cloud computing systems. IEEE Access 7, 78685–78697 (2019)

    Article  Google Scholar 

  16. Keshta, I., Soni, M., Deb, N., Singh, S., Saravanan, K., Khan, I.R.: Game theory-based optimization for efficient IoT task offloading in 6G network base stations (2024)

    Google Scholar 

  17. Yang, H., Zhang, H., Gong, Z.: Computation offloading and resource allocation in mobile edge computing-enabled IoT network (2024)

    Google Scholar 

  18. Bing-jie, L., Wang, H., Li, M., Ding, L., Li, F., Dong, P.: Dynamic pricing in edge computing resource allocation based on stackelberg dynamic game (2023)

    Google Scholar 

  19. Yin, T., Chen, X., Jiao, L., Xing, H., Min, G.: Game-based service requests and channel selection in mobile edge computing (2023)

    Google Scholar 

  20. Liu, X., Zheng, J., Zhang, M., Li, Y., Wang, R., He, Y.: A game-based computing resource allocation scheme of edge server in vehicular edge computing networks considering diverse task offloading modes. Sensors 24(1) (2024). https://www.mdpi.com/1424-8220/24/1/69

  21. Li, N., Yan, J., Zhang, Z., Martinez, J.F., Yuan, X.: Game theory based joint task offloading and resource allocation algorithm for mobile edge computing. In: 2020 16th International Conference on Mobility, Sensing and Networking (MSN), pp. 791–796 (2020)

    Google Scholar 

  22. Li, S., Zhang, N., Jiang, R., Zhang, Y., Han, T.: Joint task offloading and resource allocation in mobile edge computing with energy harvesting. J. Cloud Comput. 11(1), 17 (2022). https://doi.org/10.1186/s13677-022-00290-w

    Article  MATH  Google Scholar 

  23. Song, Q., Qu, L.: UAV-D2D assisted latency minimization and load balancing in mobile edge computing with deep reinforcement learning. In: Jin, H., Yu, Z., Yu, C., Zhou, X., Lu, Z., Song, X. (eds.) Green, Pervasive, and Cloud Computing, pp. 108–122. Springer, Singapore (2024)

    Chapter  MATH  Google Scholar 

  24. Li, S., Zhai, D., Du, P., Han, T.: Energy-efficient task offloading, load balancing, and resource allocation in mobile edge computing enabled IoT networks. SCIENCE CHINA Inf. Sci. 62(29), 307 (2019). https://doi.org/10.1007/s11432-017-9440-x

    Article  MATH  Google Scholar 

  25. Patsias, V., Amanatidis, P., Karampatzakis, D., Lagkas, T., Michalakopoulou, K., Nikitas, A.: Task allocation methods and optimization techniques in edge computing: a systematic review of the literature. Future Internet 15(8) (2023). https://www.mdpi.com/1999-5903/15/8/254

  26. Tabatabaee Malazi, H., et al.: Dynamic service placement in multi-access edge computing: a systematic literature review. IEEE Access 10, 32639–32688 (2022)

    Article  MATH  Google Scholar 

  27. Chu, W., Yu, P., Yu, Z., Lui, J.C., Lin, Y.: Online optimal service selection, resource allocation and task offloading for multi-access edge computing: a utility-based approach. IEEE Trans. Mob. Comput. 22(7), 4150–4167 (2023)

    Article  MATH  Google Scholar 

  28. Ding, Y., Li, K., Liu, C., Tang, Z., Li, K.: Budget-constrained service allocation optimization for mobile edge computing. IEEE Trans. Serv. Comput. 16(1), 147–161 (2023)

    MATH  Google Scholar 

  29. Hassannataj Joloudari, J., Mojrian, S., Saadatfar, H., et al.: Resource allocation problem and artificial intelligence: the state-of-the-art review (2009–2023) and open research challenges. Multimedia Tools Appl. 83, 67953–67996 (2024). https://doi.org/10.1007/s11042-024-18123-0

    Article  Google Scholar 

  30. Wu, W.K.: Theory and practical application based on game theory. BCP business & management (2023)

    Google Scholar 

  31. Li, Y.: Study and application of game theory. Highlights in Business, Economics and Management (2023)

    Google Scholar 

  32. Pi, J.: Game theory and game mechanics design (2024)

    Google Scholar 

  33. Xiaohui, J., Xuejun, Z., Xiangmin, G.: A collision avoidance method based on satisfying game theory. In: 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp. 96–99 (2012)

    Google Scholar 

  34. Munck, G.L.: Game theory and comparative politics: new perspectives and old concerns. World Politics 53(2), 173–204 (2001)

    Article  MATH  Google Scholar 

  35. Wang, S., Hu, Z., Deng, Y., Hu, L.: Game-theory-based task offloading and resource scheduling in cloud-edge collaborative systems. Appl. Sci. 12(12) (2022). https://www.mdpi.com/2076-3417/12/12/6154

Download references

Acknowledgment

The authors express their gratitude to all researchers in Game Theory and Edge Computing for their invaluable contributions. They also extend their thanks to the School of Computer Engineering, KIIT Deemed to be University & School of Computer Science, University College Dublin for the support that they have provided throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Bandyopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, K., Goktas, P., Sahoo, B., Swain, S., Bandyopadhyay, A. (2025). IoT-Based Service Allocation in Edge Computing Using Game Theory. In: Bramas, Q., et al. Distributed Computing and Intelligent Technology. ICDCIT 2025. Lecture Notes in Computer Science, vol 15507. Springer, Cham. https://doi.org/10.1007/978-3-031-81404-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81404-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81403-7

  • Online ISBN: 978-3-031-81404-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics