Skip to main content

Explainable Cubic Attention-Based Autoencoder for Skin Cancer Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2024)

Abstract

In this article, Explainable Cubic Attention-based Autoencoder (ECAbA) model is proposed for skin cancer classification. The proposed model has a data augmentation module, which transform an imbalanced HAM10000 dataset into a refined and balanced form. In the second step, Cubic Attention-based Autoencoder (CAbA) model is proposed, which has 5 3D convolutional layers, 2 attention modules and one flatten, dense and neural successive cancellation layers. The trained model is then used for three explainable models, i.e., LIME, Grad-CAM, and Kernel SHAP, to make the explanations of predicted images. The outputs of these explainer modules make the predictions of CAbA model explainable and reliable. For fostering confidence among medical practitioners, the proposed model can assist in the adoption of AI approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bibi, S., et al.: MSRNet: multiclass skin lesion recognition using additional residual block based fine-tuned deep models information fusion and best feature selection. Diagnostics 13(19), 3063 (2023)

    Article  MATH  Google Scholar 

  2. Hussain, M., et al.: SkinNet-INIO: multiclass skin lesion localization and classification using fusion-assisted deep neural networks and improved nature-inspired optimization algorithm. Diagnostics 13(18), 2869 (2023)

    Article  MATH  Google Scholar 

  3. Jiang, Y., et al.: Skin lesion segmentation based on multi-scale attention convolutional neural network. IEEE Access 8, 122811–122825 (2020)

    Article  Google Scholar 

  4. Kadry, S., Taniar, D., Damasevicius, R., Rajinikanth, V., Lawal, I.A.: Extraction of abnormal skin lesion from dermoscopy image using VGG-segnet (2021)

    Google Scholar 

  5. Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  6. Maqsood, S., Damaševičius, R.: Multiclass skin lesion localization and classification using deep learning based features fusion and selection framework for smart healthcare. Neural Netw. 160, 238–258 (2023)

    Article  MATH  Google Scholar 

  7. Nawaz, M., et al.: Melanoma segmentation: a framework of improved Densenet77 and UNET convolutional neural network. Int. J. Imaging Syst. Technol. 32(6), 2137–2153 (2022)

    Article  MATH  Google Scholar 

  8. Nivedha, S., Shankar, S.: Melanoma diagnosis using enhanced faster region convolutional neural networks optimized by artificial gorilla troops algorithm. Inf. Technol. Control 52(4), 819–832 (2023)

    Article  MATH  Google Scholar 

  9. Park, C., et al.: Diagnostic performance for detecting bone marrow edema of the hip on dual-energy CT: deep learning model vs. musculoskeletal physicians and radiologists. Eur. J. Radiol. 152, 110337 (2022)

    Article  MATH  Google Scholar 

  10. Połap, D., Winnicka, A., Serwata, K., Kęsik, K., Woźniak, M.: An intelligent system for monitoring skin diseases. Sensors (Switzerland) 18(8), 2552 (2018)

    Article  Google Scholar 

  11. Rajinikanth, V., Kadry, S., Damasevicius, R., Sankaran, D., Abed Mohammed, M., Chander, S.: Skin melanoma segmentation using VGG-UNET with ADAM/SGD optimizer: a study, pp. 982 – 986 (2022)

    Google Scholar 

  12. Ren, G.: Monkeypox disease detection with pretrained deep learning models. Inf. Technol. Control 52(2), 288–296 (2023)

    Article  MATH  Google Scholar 

  13. Ribeiro, M., Singh, S., Guestrin, C.: "why should i trust you?" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  14. Rubinstein, R.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1, 127–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Selvaraju, R., et al.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  16. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robertas Damaševičius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nasir, I.M., Tehsin, S., Damaševičius, R., Zielonka, A., Woźniak, M. (2025). Explainable Cubic Attention-Based Autoencoder for Skin Cancer Classification. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2024. Lecture Notes in Computer Science(), vol 15166. Springer, Cham. https://doi.org/10.1007/978-3-031-81596-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-81596-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-81595-9

  • Online ISBN: 978-3-031-81596-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics